-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
47 lines (38 loc) · 1.46 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from flask import Flask, request, render_template, jsonify
import joblib
import pandas as pd
app = Flask(__name__)
# Cargar el pipeline desde el archivo pickle
pipeline = joblib.load('pipeline_model.pkl')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
# Obtener los datos del formulario
data = {
'consignee_address': request.form['consignee_address'],
'carrier_sasc_code': request.form['carrier_sasc_code'],
'loading_port': request.form['loading_port'],
'unloading_port': request.form['unloading_port'],
'estimate_arrival_date_year': int(request.form['estimate_arrival_date_year']),
'estimate_arrival_date_month': int(request.form['estimate_arrival_date_month']),
'estimate_arrival_date_day': int(request.form['estimate_arrival_date_day']),
}
# Convertir los datos a un DataFrame
df = pd.DataFrame([data])
# Hacer la predicción
prediction = pipeline.predict(df)[0]
# Mapear las predicciones a categorías
if prediction == 0:
delay_category = 'Hasta 10 días'
elif prediction == 1:
delay_category = 'De 10 a 20 días'
elif prediction == 2:
delay_category = 'Más de 20 días'
else:
delay_category = 'Desconocido'
# Retornar el resultado como JSON
return jsonify({'prediction': delay_category})
if __name__ == '__main__':
app.run(debug=True)