forked from liguge/Graph-Dynamic-Autoencoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
111 lines (88 loc) · 3.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# --coding:utf-8--
import os
import time
import torch
import torch.nn as nn
from torch import optim
from model import GAElayer, GraphStackAE, construct_graph
from argparse import ArgumentParser
from util import get_train_data
def parse_args():
# Setting parameters
parser = ArgumentParser(description='Implement of Fault Detection with GDAE')
parser.add_argument('--num_train_layer_epochs', type=int, default=80, help='epochs of layer training')
parser.add_argument('--num_train_whole_epochs', type=int, default=30, help='epochs of whole training')
args = parser.parse_args()
return args
def train_layers(layers_list=None, layer=None, num_epoch=None, inputs=None, lr=0.005):
for net in layers_list:
net.cuda()
optimizer = optim.Adam(layers_list[layer].parameters(), lr=lr, weight_decay=5e-4)
criterion = nn.MSELoss()
# train
for epoch in range(num_epoch):
# Freeze the parameters of all layers before the current layer - layer 0 has no predecessor layers
if layer != 0:
for index in range(layer):
layers_list[index].lock_grad()
# In addition to the freeze parameters, you should also set the output return method of the freeze layer
layers_list[index].is_training_layer = False
g, out = inputs
# Forward calculation for the former (layer-1) frozen layer
if layer != 0:
for l in range(layer):
g, out = layers_list[l]([g, out])
# train
g, pred = layers_list[layer]([g, out])
optimizer.zero_grad()
loss = criterion(pred, out)
loss.backward()
optimizer.step()
print("Epoch %d | Loss: %.4f | learning rate: %.6f" % (epoch+1, loss, optimizer.param_groups[0]['lr']))
def train_whole(net=None, num_epoch=None, inputs=None, lr=0.0001):
print(">> start training whole model")
if torch.cuda.is_available():
net.cuda()
# Unfreezing of parameters frozen due to pre-trained monolayers
for param in net.parameters():
param.require_grad = True
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=5e-4)
criterion = nn.MSELoss()
# train
for epoch in range(num_epoch):
g, out = inputs
pred = net([g, out])
optimizer.zero_grad()
loss = criterion(pred, out)
loss.backward()
optimizer.step()
print("Epoch %d | Loss: %.4f | learning rate: %.6f" % (epoch + 1, loss, optimizer.param_groups[0]['lr']))
if __name__ == '__main__':
start = time.time()
args = parse_args()
feats = [52, 52, 27]
train_data = get_train_data(unit=list(range(52)))
train_g = construct_graph(train_data, neighbor=5)
train_g = train_g.to("cuda:0")
train_g.edata['h_e'] = train_g.edata['h_e'].cuda()
train_data = torch.Tensor(train_data)
train_data = train_data.cuda()
num_layers = 5
encoder_1 = GAElayer(feats[0], feats[1], SelfTraining=True)
encoder_2 = GAElayer(feats[1], feats[2], SelfTraining=True)
decoder_1 = GAElayer(feats[2], feats[1], SelfTraining=True)
decoder_2 = GAElayer(feats[1], feats[0], SelfTraining=True)
layers_list = [encoder_1, encoder_2, decoder_1, decoder_2]
for level in range(num_layers - 1):
print("layer %d" % (level + 1))
train_layers(layers_list=layers_list, layer=level, num_epoch=args.num_train_layer_epochs,
inputs=[train_g, train_data])
net = GraphStackAE(layers_list=layers_list)
net.cuda()
train_whole(net=net, num_epoch=args.num_train_whole_epochs, inputs=[train_g, train_data])
base_path = "./params/"
if not os.path.exists(base_path):
os.makedirs(base_path)
torch.save(net, os.path.join(base_path, "net.pkl"))
torch.save(net.state_dict(), os.path.join(base_path, "net_params.pkl"))
print("time span : %.4f s" % (time.time()-start))