-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathi2v_preprocessing.py
executable file
·661 lines (517 loc) · 22.3 KB
/
i2v_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
##############################################################################
# #
# Code for the USENIX Security '22 paper: #
# How Machine Learning Is Solving the Binary Function Similarity Problem. #
# #
# MIT License #
# #
# Copyright (c) 2019-2022 Cisco Talos #
# #
# Permission is hereby granted, free of charge, to any person obtaining #
# a copy of this software and associated documentation files (the #
# "Software"), to deal in the Software without restriction, including #
# without limitation the rights to use, copy, modify, merge, publish, #
# distribute, sublicense, and/or sell copies of the Software, and to #
# permit persons to whom the Software is furnished to do so, subject to #
# the following conditions: #
# #
# The above copyright notice and this permission notice shall be #
# included in all copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, #
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF #
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND #
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE #
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION #
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #
# #
# PVDM / PVDBOW / Asm2vec preprocessing #
# #
##############################################################################
import argparse
import coloredlogs
import json
import logging
import multiprocessing
import networkx as nx
import os
import random
import re
from collections import Counter
from collections import defaultdict
from tqdm import tqdm
log = None
# FIXED PARAM
random.seed(11)
INST_SPLITTER = re.compile(r"[#,\{\}\+\-\*\\\[\]:\(\)\s]")
def set_logger(debug, outputdir):
"""
Set logger level, syntax, and logfile.
Args
debug: if True, set the log level to DEBUG
outputdir: path of the output directory for the logfile
"""
LOG_NAME = 'i2v_preprocessing'
global log
log = logging.getLogger(LOG_NAME)
fh = logging.FileHandler(os.path.join(
outputdir, '{}.log'.format(LOG_NAME)))
fh.setLevel(logging.DEBUG)
fmt = '%(asctime)s %(levelname)s:: %(message)s'
formatter = coloredlogs.ColoredFormatter(fmt)
fh.setFormatter(formatter)
log.addHandler(fh)
if debug:
loglevel = 'DEBUG'
else:
loglevel = 'INFO'
coloredlogs.install(fmt=fmt,
datefmt='%H:%M:%S',
level=loglevel,
logger=log)
def generate_random_walks(G, num_rwalks, max_walk_len):
"""
Generate random walks on the CFG in input.
Args
G: a nx.DiGraph representing a function CFG
num_rwalks: number of random walks
max_walk_len: max number of BB in the random walk
Return
a list of (num_rwalks X) lists of BBs
"""
list_rwalks = list()
# Graph is empty
if len(G.nodes) == 0:
log.warning("Graph doesn't contain any node")
return list_rwalks
# Graph contains one node only:
if len(G.nodes) == 1:
log.warning("Graph contains 1 node only")
return [[list(G.nodes)[0]] for x in range(num_rwalks)]
for _ in range(num_rwalks):
rwalk = list()
rwalk_set = set()
# Start from one node with no incoming edges if exists
starting_nodes = [n for n in G.nodes if G.in_degree(n) == 0]
if len(starting_nodes) > 0:
# Pick-up a random node among those in the list
current_node = random.sample(starting_nodes, k=1)[0]
else:
# If could not find a node with in_degree == 0,
# take the node at the lowest address
current_node = min(list(G.nodes))
# Update the current walk
rwalk_set.add(current_node)
rwalk.append(current_node)
# Update the list of successors
# If there is a loop, do not take the same node multiple times
successors = set(G.successors(current_node)) - rwalk_set
# Iterate until there is still a successor and the len
# of the list does not exceed the maximum length.
while (len(successors) > 0) \
and (len(rwalk) < max_walk_len):
# Pick up a random successor node
current_node = random.choice(list(successors))
# Update the current random walk
rwalk_set.add(current_node)
rwalk.append(current_node)
# Update the list of successors
successors = set(G.successors(current_node)) - rwalk_set
# log.debug("New random walk of size: %d" % len(rwalk))
list_rwalks.append(rwalk)
return list_rwalks
def instruction_splitter(instruction):
"""
Split an instruction into simpler components. If you are using IDA
"print_operand", you may want to exclude the dummy names
(https://www.hex-rays.com/products/ida/support/idadoc/609.shtml)
This function expect the output from Capstone disassembler.
Args
instruction: the ASM instruction
Return
a list of (valid) splits
"""
return [x for x in INST_SPLITTER.split(instruction) if x]
def generate_instruction_sequences(random_walk, blocks_dict, max_walk_tokens):
"""
Convert the list of basic blocks into a list of instructions.
Args
random_walk: a list of basic blocks
blocks_dict: a dictionary with the BBs of the function
max_walk_tokens: maximum number of tokens per rand walk
(here it is used to limit the max number of instructions!)
Return
the list of tokens (mnemonic and operands)
"""
instructions_list = list()
for b_id in random_walk:
if not str(b_id) in blocks_dict:
continue
# Get the corresponding BB
bb_disasm = blocks_dict[str(b_id)]['bb_disasm']
for instruction in bb_disasm:
instruction = instruction.lower()
# log.debug("Instruction (pre split) %s", instruction)
instruction = instruction_splitter(instruction)
# log.debug("Instruction (post split) %s", instruction)
instructions_list.append(instruction)
# max_walk_tokens is the upper limit
if len(instructions_list) > max_walk_tokens:
break
return instructions_list
def generate_CFG(nodes, edges):
"""
Construct a nx.Digraph (CFG) from the list of nodes and edges.
Args
nodes: list of BB nodes
edges: list of BB edges
Return
nx.DiGraph of the function CFG
"""
G = nx.DiGraph()
for node in nodes:
G.add_node(node)
for edge in edges:
G.add_edge(edge[0], edge[1])
return G
def get_tokens_count(functions_dict):
"""
Count the number of occurrences for tokens in the random_walks.
Args
functions_dict: map functions to random walks
Return
Counter: the frequency of each token in the rand walks
"""
c = Counter()
for random_walks in functions_dict.values():
# Each function is associated with several random walks
for instructions_list in random_walks:
for ins in instructions_list:
c.update(ins)
return c
def select_tokens(counter_dict, min_frequency, vocabulary=None):
"""
Count the number of occurrences for each token.
Args
counter_dict: a dict that maps each token to a frequency counter
min_frequency: minimum tokens frequency
vocabulary: the set of tokens in the vocabulary
Return
set: tokens to keep
set: tokens to discard
dict: a dict that maps each token to a frequency counter
"""
log.info("[*] Tokens selection started")
log.info("\tFound {} total tokens".format(len(counter_dict.keys())))
if not vocabulary:
log.info("\tGenerating tokens vocabulary")
# If the vocabulary is not defined (i.e., training dataset)
new_counter_dict = {x: y for x,
y in counter_dict.items() if y >= min_frequency}
selected_tokens = new_counter_dict.keys()
dropped_tokens = counter_dict.keys() - selected_tokens
else:
log.info("\tUsing existing tokens vocabulary")
# If the vocabulary is defined (i.e., testing dataset)
selected_tokens = counter_dict.keys() & vocabulary
new_counter_dict = {x: counter_dict[x]
for x in (selected_tokens)}
dropped_tokens = counter_dict.keys() - selected_tokens
log.info("\t{} dropped tokens".format(len(dropped_tokens)))
log.info("\t{} selected tokens".format(len(selected_tokens)))
return selected_tokens, dropped_tokens, new_counter_dict
def load_vocabulary_from_file(input_path):
"""
Load the vocabulary of tokens from file. Tokens are saved one per line.
Args
input_path: path of the vocabulary file
Return
vocabulary_set: the set of words in the vocabulary
"""
log.info("[*] Loading vocabulary form: {}".format(input_path))
with open(input_path) as f_in:
vocabulary_set = set(f_in.read().splitlines())
log.info("[*] Loaded {} tokens.".format(len(vocabulary_set)))
return vocabulary_set
def save_vocabulary_to_file(selected_tokens, output_path):
"""
Save to file the vocabulary of selected tokens, one per line.
Args
selected_tokens: the set of tokens (words) selected for training
output_path: the path of the file in output
"""
with open(output_path, "w") as f_out:
f_out.write("\n".join(list(selected_tokens)))
log.info("[*] Vocabulary saved to: {}".format(output_path))
def save_counter_dict_to_file(counter_dict, output_path):
"""
Save to file the dictionary with the tokens count.
Args
counter_dict: a dictionary with the count associated to each token
output_path: the path of the JSON file
"""
with open(output_path, "w") as f_out:
json.dump(counter_dict, f_out)
log.info("[*] Tokens counter saved to: {}".format(output_path))
def save_rwalks_to_file_inner(asm2vec, max_tokens, functions_dict,
id2func, func2id, f_out, vocabulary, max_id):
"""
Dump to file the selected list of tokens for each function.
Args
asm2vec: if True, save the tokens for the same instruction all together
max_tokens: max number of tokens for each random walk
functions_dict: dict that maps functions to random walks
id2func: dict that maps numerical IDS to function names (idb + fva)
func2id: the opposite of id2func
f_out: fp for the output file
vocabulary: selected vocabulary
max_id: starting counter for the functions identifiers
"""
# Map functions to id and vice versa
for _id, func in enumerate(functions_dict.keys()):
id2func[_id + max_id] = func
func2id[func] = _id + max_id
# Iterate over all the functions
for func, rand_walks in functions_dict.items():
_id = func2id[func]
# Iterate over each random walk associated to the function
for rand_walk in rand_walks:
new_rand_walk = list()
# Count the number of tokens for each random walk
cnt_rand_walk = 0
# Iterate over the instructions of the random walk
for ins in rand_walk:
new_ins = [
x if x in vocabulary else 'UNK' for x in ins]
if asm2vec:
new_rand_walk.append('::'.join(new_ins))
else:
new_rand_walk.extend(new_ins)
# Approximated (the length can be a bit higher than max_tokens)
cnt_rand_walk += len(new_ins)
if cnt_rand_walk > max_tokens:
break
f_out.write("{},{}\n".format(_id, ";".join(new_rand_walk)))
def save_rwalks_to_file(queue_funcs_dict, config, vocabulary,
outputdir, tot_iterations):
"""
Wrapper function that save tokens to file
Args
queue_funcs_dict: queue with results from workers
config: configuration dictionary (model name, random walk length...)
vocabulary: set of the vocabulary tokens (can be None)
outputdir: output directory to save the results
tot_iterations: this is used to update the progress bar
"""
log.info("[*] Saving random walks to file")
id2func = dict()
func2id = dict()
asm2vec = False
if config['model'] == 'a2v':
asm2vec = True
# Save random walks to file
output_path = os.path.join(
outputdir, "random_walks_{}.csv".format(config['model']))
f_out = open(output_path, "w")
f_out.write("func_id,random_walk\n")
# Collect the fdict results
pbar = tqdm(total=tot_iterations)
while not queue_funcs_dict.empty():
f_dict = queue_funcs_dict.get()
save_rwalks_to_file_inner(
asm2vec=asm2vec,
max_tokens=config['max_walk_tokens'],
functions_dict=f_dict,
id2func=id2func,
func2id=func2id,
f_out=f_out,
vocabulary=vocabulary,
max_id=len(id2func))
pbar.update(1)
pbar.close()
f_out.close()
log.info("\trandom_walks saved to: {}".format(output_path))
# Save the id2func mapping to file
output_path = os.path.join(outputdir, "id2func.json")
with open(output_path, "w") as f_out:
json.dump(id2func, f_out)
log.info("\tid2func saved to: {}".format(output_path))
def worker_func(queue_counter_dict, queue_funcs_dict, j_path, config):
"""
Random walks and tokens extraction for each function.
Args:
queue_counter_dict: multiprocess queue to collect the results
queue_funcs_dict: multiprocess queue to collect the results
j_path: path of the mldisasm JSON file in input
config: configuration dictionary
Return:
functions_dict: a dict that maps functions to random walks.
"""
functions_dict = defaultdict(list)
with open(j_path) as f_in:
jj = json.load(f_in)
idb_path = list(jj.keys())[0]
print("[D] Processing: {}".format(idb_path))
j_data = jj[idb_path]
del j_data['arch']
# num_functions = len(j_data.keys())
# Iterate over each function
for cnt, fva in enumerate(j_data):
# print("[D] Processing: {}:{} ({}/{})".format(
# idb_path, fva, cnt + 1, num_functions))
fva_data = j_data[fva]
# Generate a nx.Digraph for the function
nodes = fva_data['nodes']
edges = fva_data['edges']
G = generate_CFG(nodes, edges)
random_walks = list()
# In the first visit use the original instructions order
random_walks.append(list(fva_data['nodes']))
num_rwalks = config['num_rwalks'] - 1
# Add the other visits in random order
if num_rwalks > 0:
random_walks.extend(generate_random_walks(
G, num_rwalks=num_rwalks,
max_walk_len=config['max_walk_len']))
# Convert a visit into a list of instructions
for random_walk in random_walks:
instructions_list = generate_instruction_sequences(
random_walk,
fva_data['basic_blocks'],
config['max_walk_tokens'])
# functions_dict contains a list of random walks for each function
# Each random_walk is a list of instructions
# Each instruction is a list of mnemonic and operands
functions_dict["{}:{}".format(idb_path, fva)].append(
instructions_list)
# Save the results in the queue
queue_counter_dict.put(get_tokens_count(functions_dict))
queue_funcs_dict.put(functions_dict)
def preprocess_inputs(config, inputdir, outputdir,
vocabulary_set, num_workers):
"""
Run the workers to process the input data.
Args
config: a dictionay with the configuration parameters
inputdir: a directory with the IDA_acfg_disasm files
outputdir: the output directory
vocabulary_set: the set of tokens in the vocabulary
workers: number of workers for parallel execution
"""
c_dict_glob = Counter()
pool_results = list()
log.info("[*] Creating a new Pool (num_workers: {})".format(num_workers))
pool = multiprocessing.Pool(processes=num_workers, maxtasksperchild=50)
# Creating two queues: one to for the tokens counter,
# the other for the functions random walks.
m = multiprocessing.Manager()
queue_counter_dict = m.Queue()
queue_funcs_dict = m.Queue()
# Iterate over each JSON file (each JSON corresponds to an IDB)
for f_name in tqdm(os.listdir(inputdir)):
if not f_name.endswith(".json"):
continue
j_path = os.path.join(inputdir, f_name)
res = pool.apply_async(worker_func, args=(
queue_counter_dict, queue_funcs_dict, j_path, config,))
pool_results.append(res)
log.info("[*] Waiting for processes to finish")
# Close the pool
pool.close()
pool.join()
# Wait for all the async tasks to finish
for res in pool_results:
res.get()
log.info("[*] All processes finished")
# Collect the results from queue_counter_dict
log.info("[*] Collecting results from counter_dict")
pbar = tqdm(total=len(pool_results))
while not queue_counter_dict.empty():
c_dict_glob += queue_counter_dict.get()
pbar.update(1)
pbar.close()
# Evaluation and test data use the same tokens as in the vocabulary
selected_tokens = vocabulary_set
dropped_tokens = None
new_counter_dict = None
if not vocabulary_set:
# Select which tokens to filter-out based on their frequency
selected_tokens, dropped_tokens, new_counter_dict = select_tokens(
counter_dict=c_dict_glob,
min_frequency=config['min_frequency'],
vocabulary=vocabulary_set)
# Save random walks to file
save_rwalks_to_file(queue_funcs_dict, config,
selected_tokens, outputdir, len(pool_results))
if not vocabulary_set:
output_file = "vocabulary.csv"
output_path = os.path.join(outputdir, output_file)
save_vocabulary_to_file(selected_tokens, output_path)
output_file = "vocabulary_dropped.csv"
output_path = os.path.join(outputdir, output_file)
save_vocabulary_to_file(dropped_tokens, output_path)
output_file = "counter_dict.json"
output_path = os.path.join(outputdir, output_file)
save_counter_dict_to_file(new_counter_dict, output_path)
def main():
parser = argparse.ArgumentParser(
prog='i2v_preprocessing',
description='i2v_preprocessing',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('-d', '--debug', action='store_true',
help='Log level debug')
parser.add_argument('-i', '--inputdir', required=True,
help='Input dir with mldisasm JSONs files')
group0 = parser.add_mutually_exclusive_group(required=True)
group0.add_argument('-d2v', '--doc2vec', dest='model',
action='store_const', const='d2v',
help='Use it for the PV-DM or PV-DBOW model')
group0.add_argument('-a2v', '--asm2vec', dest='model',
action='store_const', const='a2v',
help='Use it for the asm2vec model version')
parser.add_argument('--num_rwalks', type=int, default=10,
help="Number of random walks")
parser.add_argument('--max_walk_len', type=int, default=500,
help="Max number of BBs in each random_walk")
parser.add_argument('--max_walk_tokens', type=int, default=50000,
help="Max number of tokens for each random_walk")
parser.add_argument('--min_frequency', type=int, default=3,
help="Min tokens counter for selection")
parser.add_argument('-v', '--vocabulary',
help='Path of an existing vocabulary')
parser.add_argument('-w', '--workers', type=int, default=2,
help='Number of workers to process the input')
parser.add_argument('-o', '--outputdir', required=True,
help='Output dir for logs and checkpoints')
args = parser.parse_args()
# Create the output directory
if args.outputdir:
if not os.path.isdir(args.outputdir):
os.mkdir(args.outputdir)
print("[*] Created outputdir: {}".format(args.outputdir))
# Create logger
set_logger(args.debug, args.outputdir)
log.info(args.model)
config = {
'model': args.model,
'num_rwalks': int(args.num_rwalks),
'max_walk_len': int(args.max_walk_len),
'max_walk_tokens': int(args.max_walk_tokens),
'min_frequency': int(args.min_frequency),
}
vocabulary_set = None
if args.vocabulary:
log.info("[*] Fixed vocabulary: use with TEST data only")
vocabulary_set = load_vocabulary_from_file(args.vocabulary)
else:
log.info("[*] New vocabulary: use with TRAINING data only")
preprocess_inputs(config=config,
inputdir=args.inputdir,
outputdir=args.outputdir,
vocabulary_set=vocabulary_set,
num_workers=args.workers)
if __name__ == '__main__':
main()