-
Notifications
You must be signed in to change notification settings - Fork 0
/
S3_File ECFC for reb.cppipe
404 lines (382 loc) · 20.6 KB
/
S3_File ECFC for reb.cppipe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
CellProfiler Pipeline: http://www.cellprofiler.org
Version:5
DateRevision:421
GitHash:
ModuleCount:22
HasImagePlaneDetails:False
Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
:
Filter images?:Images only
Select the rule criteria:and (extension does isimage) (directory doesnot containregexp "[\/]\.")
Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:['The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Extract metadata?:Yes
Metadata data type:Text
Metadata types:{}
Extraction method count:1
Metadata extraction method:Extract from file/folder names
Metadata source:File name
Regular expression to extract from file name:^(?P<Plate>.*)_(?P<Well>[A-P][0-9]{2})_s(?P<Site>[0-9])_w(?P<ChannelNumber>[0-9])
Regular expression to extract from folder name:(?P<Date>[0-9]{4}_[0-9]{2}_[0-9]{2})$
Extract metadata from:All images
Select the filtering criteria:and (file does contain "")
Metadata file location:Elsewhere...|
Match file and image metadata:[]
Use case insensitive matching?:No
Metadata file name:
Does cached metadata exist?:No
NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:8|show_window:False|notes:['The NamesAndTypes module allows you to assign a meaningful name to each image by which other modules will refer to it.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Assign a name to:All images
Select the image type:Color image
Name to assign these images:Original
Match metadata:[]
Image set matching method:Order
Set intensity range from:Image metadata
Assignments count:1
Single images count:0
Maximum intensity:255.0
Process as 3D?:No
Relative pixel spacing in X:1.0
Relative pixel spacing in Y:1.0
Relative pixel spacing in Z:1.0
Select the rule criteria:and (file does contain "")
Name to assign these images:DNA
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Do you want to group your images?:No
grouping metadata count:1
Metadata category:Series
ColorToGray:[module_num:5|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['seperate 3 channels to gray (gray channel needed for object recognition)']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Original
Conversion method:Split
Image type:Channels
Name the output image:OrigGray
Relative weight of the red channel:1.0
Relative weight of the green channel:1.0
Relative weight of the blue channel:1.0
Convert red to gray?:Yes
Name the output image:VWF_channel
Convert green to gray?:No
Name the output image:RAB_channel
Convert blue to gray?:Yes
Name the output image:VeCad_channel
Convert hue to gray?:Yes
Name the output image:OrigHue
Convert saturation to gray?:Yes
Name the output image:OrigSaturation
Convert value to gray?:Yes
Name the output image:OrigValue
Channel count:3
Channel number:1
Relative weight of the channel:1.0
Image name:Nuclei
Channel number:2
Relative weight of the channel:1.0
Image name:Organelle
Channel number:3
Relative weight of the channel:1.0
Image name:Cell_Membrane
Smooth:[module_num:6|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['Smooth nuclei for easier object ID']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Nuclei
Name the output image:Smoothed_Nuclei
Select smoothing method:Gaussian Filter
Calculate artifact diameter automatically?:No
Typical artifact diameter:10
Edge intensity difference:0.3
Clip intensities to 0 and 1?:No
Threshold:[module_num:7|svn_version:'Unknown'|variable_revision_number:12|show_window:False|notes:['increase threshold for easier Nuclei ID']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Smoothed_Nuclei
Name the output image:Threshold_Nuclei
Threshold strategy:Global
Thresholding method:Minimum Cross-Entropy
Threshold smoothing scale:1
Threshold correction factor:1.4
Lower and upper bounds on threshold:0.01,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu
IdentifyPrimaryObjects:[module_num:8|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:['ID nuclei as objects']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Threshold_Nuclei
Name the primary objects to be identified:Nuclei_Object
Typical diameter of objects, in pixel units (Min,Max):50,400
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:No
Method to distinguish clumped objects:Shape
Method to draw dividing lines between clumped objects:Shape
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:40
Speed up by using lower-resolution image to find local maxima?:No
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:No
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:1
Threshold correction factor:1.4
Lower and upper bounds on threshold:0.0, 1.0
Manual threshold:0.5
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:10
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2
Thresholding method:Otsu
Smooth:[module_num:9|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['smooth the cell wall for easier identification, similarly to the smoothing for the nuclei.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Cell_Membrane
Name the output image:CM_Smoothed
Select smoothing method:Gaussian Filter
Calculate artifact diameter automatically?:No
Typical artifact diameter:5
Edge intensity difference:0.1
Clip intensities to 0 and 1?:Yes
IdentifySecondaryObjects:[module_num:10|svn_version:'Unknown'|variable_revision_number:10|show_window:False|notes:['Identify cells using the nuclei identified previously. through propagation, the amount of cells is equal to the amount of nuclei.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input objects:Nuclei_Object
Name the objects to be identified:Cells_Object
Select the method to identify the secondary objects:Propagation
Select the input image:CM_Smoothed
Number of pixels by which to expand the primary objects:10
Regularization factor:0
Discard secondary objects touching the border of the image?:Yes
Discard the associated primary objects?:No
Name the new primary objects:FilteredNuclei
Fill holes in identified objects?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:1
Threshold correction factor:0
Lower and upper bounds on threshold:0.00,1
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Three classes
Log transform before thresholding?:Yes
Assign pixels in the middle intensity class to the foreground or the background?:Background
Size of adaptive window:10
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2
Thresholding method:Otsu
IdentifyTertiaryObjects:[module_num:11|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:['create outline of cell walls.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the larger identified objects:Cells_Object
Select the smaller identified objects:Cells_Object
Name the tertiary objects to be identified:CM_Object
Shrink smaller object prior to subtraction?:Yes
RescaleIntensity:[module_num:12|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:['enhance VWF signal to make the image viewable after export.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Organelle
Name the output image:Rescale_Intensity_Organelle
Rescaling method:Stretch each image to use the full intensity range
Method to calculate the minimum intensity:Custom
Method to calculate the maximum intensity:Custom
Lower intensity limit for the input image:0.0
Upper intensity limit for the input image:1.0
Intensity range for the input image:0.0,1.0
Intensity range for the output image:0.0,1.0
Select image to match in maximum intensity:None
Divisor value:1.0
Divisor measurement:None
EnhanceOrSuppressFeatures:[module_num:13|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:['Further enhancing']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Rescale_Intensity_Organelle
Name the output image:Speckles_Organelle
Select the operation:Enhance
Feature size:24
Feature type:Speckles
Range of hole sizes:1,10
Smoothing scale:2.0
Shear angle:0.0
Decay:0.95
Enhancement method:Tubeness
Speed and accuracy:Fast
Rescale result image:No
EnhanceOrSuppressFeatures:[module_num:14|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:['further enhancing']|batch_state:array([], dtype=uint8)|enabled:False|wants_pause:False]
Select the input image:Speckles_Organelle
Name the output image:Neurites_Organelle
Select the operation:Enhance
Feature size:8
Feature type:Neurites
Range of hole sizes:1,10
Smoothing scale:1.5
Shear angle:0.0
Decay:0.95
Enhancement method:Line structures
Speed and accuracy:Fast
Rescale result image:Yes
IdentifyPrimaryObjects:[module_num:15|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:['Using the threshold to identify WPB as objects. finetuned to include long/thin WPB and short round WPB clustered together.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Speckles_Organelle
Name the primary objects to be identified:Organelle_Object
Typical diameter of objects, in pixel units (Min,Max):2,25
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:Intensity
Method to draw dividing lines between clumped objects:Shape
Size of smoothing filter:0
Suppress local maxima that are closer than this minimum allowed distance:7
Speed up by using lower-resolution image to find local maxima?:No
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:No
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Adaptive
Thresholding method:Otsu
Threshold smoothing scale:1.6
Threshold correction factor:0.9
Lower and upper bounds on threshold:0.1,1.0
Manual threshold:0.5
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:12
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu
MeasureObjectIntensity:[module_num:16|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Organelle
Select objects to measure:Organelle_Object
MeasureObjectSizeShape:[module_num:17|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select object sets to measure:Cells_Object, Organelle_Object
Calculate the Zernike features?:No
Calculate the advanced features?:No
RelateObjects:[module_num:18|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:['relate Cells to WPBs to calculate the distance between the WPB and the cell wall and the nuclei.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Parent objects:Cells_Object
Child objects:Organelle_Object
Calculate child-parent distances?:Minimum
Calculate per-parent means for all child measurements?:Yes
Calculate distances to other parents?:Yes
Do you want to save the children with parents as a new object set?:No
Name the output object:None
Parent name:Nuclei_Object
OverlayOutlines:[module_num:19|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['Creates a overlay of the WPB, cells, nucleus and enlarged nucleus objects on the Rab27 signal as background. this allows easy check of the pipeline for all samples.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Display outlines on a blank image?:No
Select image on which to display outlines:Rescale_Intensity_Organelle
Name the output image:Overlay
Outline display mode:Color
Select method to determine brightness of outlines:Max of image
How to outline:Thick
Select outline color:red
Select objects to display:Cells_Object
Select outline color:Green
Select objects to display:Organelle_Object
Select outline color:Blue
Select objects to display:Nuclei_Object
DisplayDataOnImage:[module_num:20|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Display object or image measurements?:Object
Select the input objects:Cells_Object
Measurement to display:Number_Object_Number
Select the image on which to display the measurements:Overlay
Text color:#DE24FF
Name the output image that has the measurements displayed:Overlay_Numbered
Font size (points):20
Number of decimals:0
Image elements to save:Image
Annotation offset (in pixels):0
Display mode:Text
Color map:Default
Display background image?:Yes
Color map scale:Use this image's measurement range
Color map range:0.0,1.0
SaveImages:[module_num:21|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:['overlay made on rab27 is saved here. ']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the type of image to save:Image
Select the image to save:Overlay_Numbered
Select method for constructing file names:From image filename
Select image name for file prefix:Original
Enter single file name:OrigBlue
Number of digits:4
Append a suffix to the image file name?:No
Text to append to the image name:
Saved file format:png
Output file location:Elsewhere...|
Image bit depth:8-bit integer
Overwrite existing files without warning?:No
When to save:Every cycle
Record the file and path information to the saved image?:No
Create subfolders in the output folder?:No
Base image folder:Elsewhere...|
How to save the series:T (Time)
Save with lossless compression?:Yes
ExportToDatabase:[module_num:22|svn_version:'Unknown'|variable_revision_number:28|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:True]
Database type:SQLite
Database name:DefaultDB
Add a prefix to table names?:No
Table prefix:MyExpt_
Output file location:Elsewhere...|
Create a CellProfiler Analyst properties file?:No
Database host:
Username:
Password:
Name the SQLite database file:xxx.db
Calculate the per-image mean values of object measurements?:Yes
Calculate the per-image median values of object measurements?:Yes
Calculate the per-image standard deviation values of object measurements?:Yes
Calculate the per-well mean values of object measurements?:No
Calculate the per-well median values of object measurements?:No
Calculate the per-well standard deviation values of object measurements?:No
Export measurements for all objects to the database?:Select...
Select the objects:Cells_Object,Organelle_Object
Maximum # of characters in a column name:64
Create one table per object, a single object table or a single object view?:Single object table
Enter an image url prepend if you plan to access your files via http:
Write image thumbnails directly to the database?:No
Select the images for which you want to save thumbnails:
Auto-scale thumbnail pixel intensities?:Yes
Select the plate type:None
Select the plate metadata:None
Select the well metadata:None
Include information for all images, using default values?:Yes
Properties image group count:1
Properties group field count:1
Properties filter field count:0
Workspace measurement count:1
Experiment name:xxx
Which objects should be used for locations?:None
Enter a phenotype class table name if using the Classifier tool in CellProfiler Analyst:
Export object relationships?:Yes
Overwrite without warning?:Never
Access CellProfiler Analyst images via URL?:No
Select the classification type:Object
Select an image to include:None
Use the image name for the display?:Yes
Image name:Channel1
Channel color:red
Do you want to add group fields?:No
Enter the name of the group:
Enter the per-image columns which define the group, separated by commas:ImageNumber, Image_Metadata_Plate, Image_Metadata_Well
Do you want to add filter fields?:No
Automatically create a filter for each plate?:No
Create a CellProfiler Analyst workspace file?:No
Select the measurement display tool:ScatterPlot
Type of measurement to plot on the X-axis:Image
Enter the object name:None
Select the X-axis measurement:None
Select the X-axis index:ImageNumber
Type of measurement to plot on the Y-axis:Image
Enter the object name:None
Select the Y-axis measurement:None
Select the Y-axis index:ImageNumber