-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinRx_estimator.r
132 lines (104 loc) · 4.11 KB
/
LinRx_estimator.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# https://notesofdabbler.wordpress.com/2013/06/30/learning-r-parameter-fitting-for-models-involving-differential-equations/
# set working directory
setwd("C:/Users/Owner/AppData/Local\Temp/Rtmpyag5rW/downloaded_packages")
# load libraries
library(ggplot2) #library for plotting
library(reshape2) # library for reshaping data (tall-narrow <-> short-wide)
library(deSolve) # library for solving differential equations
library(minpack.lm) # library for least squares fit using levenberg-marquart algorithm
#load concentration data
df=read.table("C:/Users/Owner/Desktop/desktop code/VanDerPol/VanDerPol/LinRx_data.dat")
names(df)=c("time","ca","cb","cc")
# plot data
tmp=melt(df,id.vars=c("time"),variable.name="species",value.name="conc")
ggplot(data=tmp,aes(x=time,y=conc,color=species))+geom_point(size=3)
# rate function
rxnrate=function(t,c,parms){
# rate constant passed through a list called parms
k1=parms$k1
k2=parms$k2
# c is the concentration of species
# derivatives dc/dt are computed below
r=rep(0,length(c))
r[1]=-k1*c["A"] #dcA/dt
r[2]=k1*c["A"]-k2*c["B"] #dcB/dt
r[3]=k2*c["B"] #dcC/dt
# the computed derivatives are returned as a list
# order of derivatives needs to be the same as the order of species in c
return(list(r))
}
# predicted concentration for a given parameter set, uses only the times of data set df
cinit=c(A=1,B=0,C=0)
t=df$time
parms=list(k1=2,k2=1)
out=ode(y=cinit,times=t,func=rxnrate,parms=parms)
head(out)
# loss function judging how well the given parameters fit the data
ssq=function(parms){
# inital concentration
cinit=c(A=1,B=0,C=0)
# time points for which conc is reported
# include the points where data is available
t=c(seq(0,5,0.1),df$time)
t=sort(unique(t))
# parameters from the parameter estimation routine
k1=parms[1]
k2=parms[2]
# solve ODE for a given set of parameters
out=ode(y=cinit,times=t,func=rxnrate,parms=list(k1=k1,k2=k2))
# Filter data that contains time points where data is available
outdf=data.frame(out)
outdf=outdf[outdf$time %in% df$time,]
# Evaluate predicted vs experimental residual
preddf=melt(outdf,id.var="time",variable.name="species",value.name="conc")
expdf=melt(df,id.var="time",variable.name="species",value.name="conc")
ssqres=preddf$conc-expdf$conc
# return predicted vs experimental residual
return(ssqres)
}
# parameter fitting using levenberg marquart algorithm
# initial guess for parameters
parms=c(k1=0.5,k2=0.5)
# fitting
fitval=nls.lm(par=parms,fn=ssq)
# Summary of fit
summary(fitval)
# variance Covariance Matrix
S=vcov(fitval)
# Estimated parameter
parest=as.list(coef(fitval))
parest
# plot of predicted vs experimental data
# simulated predicted profile at estimated parameter values
cinit=c(A=1,B=0,C=0)
t=seq(0,5,0.2)
parms=as.list(parest)
out=ode(y=cinit,times=t,func=rxnrate,parms=parms)
outdf=data.frame(out)
names(outdf)=c("time","ca_pred","cb_pred","cc_pred")
# Overlay predicted profile with experimental data
tmppred=melt(outdf,id.var=c("time"),variable.name="species",value.name="conc")
tmpexp=melt(df,id.var=c("time"),variable.name="species",value.name="conc")
p=ggplot(data=tmppred,aes(x=time,y=conc,color=species,linetype=species))+geom_line()
p=p+geom_line(data=tmpexp,aes(x=time,y=conc,color=species,linetype=species))
p=p+geom_point(data=tmpexp,aes(x=time,y=conc,color=species))
p=p+scale_linetype_manual(values=c(0,1,0,1,0,1))
p=p+scale_color_manual(values=rep(c("red","blue","green"),each=2))+theme_bw()
print(p)
# get points for a circle with radius r
conf = .95
countParameters = 2
dataPointCount=60
r=sqrt(qf(conf,countParameters,dataPointCount-countParameters)*2)
theta=seq(0,2*pi,length.out=100)
z=cbind(r*cos(theta),r*sin(theta))
# transform points of circle into points of ellipse using
# svd of inverse covariance matrix
Sinv=solve(S)
Sinv_svd=svd(Sinv) # inverse of covariance matrix
xt=t(Sinv_svd$v)%*%diag(1/sqrt(Sinv_svd$d))%*%t(z) # transform from circle to ellispse
x=t(xt)
# translate the ellipse so that center is the estimated parameter value
x=x+matrix(rep(as.numeric(parest),100),nrow=100,byrow=T)
plot(x[,1],x[,2],type="l",xlab="k1",ylab="k2",lwd=2)
points(parest$k1,parest$k2,pch=20,col="blue",cex=2)