-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
60 lines (43 loc) · 1.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import tensorflow
import keras
import pandas as pd
import sklearn
import numpy as np
from sklearn import linear_model
from sklearn.utils import shuffle
import matplotlib.pyplot as pyplot
import pickle
from matplotlib import style
best = 0
data = pd.read_csv("student-mat.csv", sep=";")
data = data[["G1", "G2", "G3", "studytime", "failures", "absences"]]
predict = "G3"
# The use of the number 1 removes the column
x = np.array(data.drop([predict], 1))
y = np.array(data[predict])
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size = 0.1)
for _ in range(3500):
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size = 0.1)
linear = linear_model.LinearRegression()
linear.fit(x_train, y_train)
acc = linear.score(x_test, y_test)
#print(acc)
if acc > best:
best = acc
with open("StudentModel.pickle", "wb") as f:
pickle.dump(linear, f)
print("The best was: ", best)
pickle_in = open("StudentModel.pickle", "rb")
linear = pickle.load(pickle_in)
print("CO : ", linear.coef_)
print("Intercept: ", linear.intercept_)
predictions = linear.predict(x_test)
print(data.head())
for i in range(len(predictions)):
print(round(predictions[i], 1), x_test[i], y_test[i])
p = "absences"
style.use("ggplot")
pyplot.scatter(data[p], data["G3"])
pyplot.xlabel(p)
pyplot.ylabel("Final grade")
pyplot.show()