-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.js
507 lines (428 loc) · 12.8 KB
/
fft.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
'use strict';
function FFT(size) {
this.size = size | 0;
if (this.size <= 1 || (this.size & (this.size - 1)) !== 0)
throw new Error('FFT size must be a power of two and bigger than 1');
this._csize = size << 1;
// NOTE: Use of `var` is intentional for old V8 versions
var table = new Array(this.size * 2);
for (var i = 0; i < table.length; i += 2) {
const angle = Math.PI * i / this.size;
table[i] = Math.cos(angle);
table[i + 1] = -Math.sin(angle);
}
this.table = table;
// Find size's power of two
var power = 0;
for (var t = 1; this.size > t; t <<= 1)
power++;
// Calculate initial step's width:
// * If we are full radix-4 - it is 2x smaller to give inital len=8
// * Otherwise it is the same as `power` to give len=4
this._width = power % 2 === 0 ? power - 1 : power;
// Pre-compute bit-reversal patterns
this._bitrev = new Array(1 << this._width);
for (var j = 0; j < this._bitrev.length; j++) {
this._bitrev[j] = 0;
for (var shift = 0; shift < this._width; shift += 2) {
var revShift = this._width - shift - 2;
this._bitrev[j] |= ((j >>> shift) & 3) << revShift;
}
}
this._out = null;
this._data = null;
this._inv = 0;
}
FFT.prototype.fromComplexArray = function fromComplexArray(complex, storage) {
var res = storage || new Array(complex.length >>> 1);
for (var i = 0; i < complex.length; i += 2)
res[i >>> 1] = complex[i];
return res;
};
FFT.prototype.createComplexArray = function createComplexArray() {
const res = new Array(this._csize);
for (var i = 0; i < res.length; i++)
res[i] = 0;
return res;
};
FFT.prototype.toComplexArray = function toComplexArray(input, storage) {
var res = storage || this.createComplexArray();
for (var i = 0; i < res.length; i += 2) {
res[i] = input[i >>> 1];
res[i + 1] = 0;
}
return res;
};
FFT.prototype.completeSpectrum = function completeSpectrum(spectrum) {
var size = this._csize;
var half = size >>> 1;
for (var i = 2; i < half; i += 2) {
spectrum[size - i] = spectrum[i];
spectrum[size - i + 1] = -spectrum[i + 1];
}
};
FFT.prototype.transform = function transform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._out = out;
this._data = data;
this._inv = 0;
this._transform4();
this._out = null;
this._data = null;
};
FFT.prototype.realTransform = function realTransform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._out = out;
this._data = data;
this._inv = 0;
this._realTransform4();
this._out = null;
this._data = null;
};
FFT.prototype.inverseTransform = function inverseTransform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._out = out;
this._data = data;
this._inv = 1;
this._transform4();
for (var i = 0; i < out.length; i++)
out[i] /= this.size;
this._out = null;
this._data = null;
};
// radix-4 implementation
//
// NOTE: Uses of `var` are intentional for older V8 version that do not
// support both `let compound assignments` and `const phi`
FFT.prototype._transform4 = function _transform4() {
var out = this._out;
var size = this._csize;
// Initial step (permute and transform)
var width = this._width;
var step = 1 << width;
var len = (size / step) << 1;
var outOff;
var t;
var bitrev = this._bitrev;
if (len === 4) {
for (outOff = 0, t = 0; outOff < size; outOff += len, t++) {
const off = bitrev[t];
this._singleTransform2(outOff, off, step);
}
} else {
// len === 8
for (outOff = 0, t = 0; outOff < size; outOff += len, t++) {
const off = bitrev[t];
this._singleTransform4(outOff, off, step);
}
}
// Loop through steps in decreasing order
var inv = this._inv ? -1 : 1;
var table = this.table;
for (step >>= 2; step >= 2; step >>= 2) {
len = (size / step) << 1;
var quarterLen = len >>> 2;
// Loop through offsets in the data
for (outOff = 0; outOff < size; outOff += len) {
// Full case
var limit = outOff + quarterLen;
for (var i = outOff, k = 0; i < limit; i += 2, k += step) {
const A = i;
const B = A + quarterLen;
const C = B + quarterLen;
const D = C + quarterLen;
// Original values
const Ar = out[A];
const Ai = out[A + 1];
const Br = out[B];
const Bi = out[B + 1];
const Cr = out[C];
const Ci = out[C + 1];
const Dr = out[D];
const Di = out[D + 1];
// Middle values
const MAr = Ar;
const MAi = Ai;
const tableBr = table[k];
const tableBi = inv * table[k + 1];
const MBr = Br * tableBr - Bi * tableBi;
const MBi = Br * tableBi + Bi * tableBr;
const tableCr = table[2 * k];
const tableCi = inv * table[2 * k + 1];
const MCr = Cr * tableCr - Ci * tableCi;
const MCi = Cr * tableCi + Ci * tableCr;
const tableDr = table[3 * k];
const tableDi = inv * table[3 * k + 1];
const MDr = Dr * tableDr - Di * tableDi;
const MDi = Dr * tableDi + Di * tableDr;
// Pre-Final values
const T0r = MAr + MCr;
const T0i = MAi + MCi;
const T1r = MAr - MCr;
const T1i = MAi - MCi;
const T2r = MBr + MDr;
const T2i = MBi + MDi;
const T3r = inv * (MBr - MDr);
const T3i = inv * (MBi - MDi);
// Final values
const FAr = T0r + T2r;
const FAi = T0i + T2i;
const FCr = T0r - T2r;
const FCi = T0i - T2i;
const FBr = T1r + T3i;
const FBi = T1i - T3r;
const FDr = T1r - T3i;
const FDi = T1i + T3r;
out[A] = FAr;
out[A + 1] = FAi;
out[B] = FBr;
out[B + 1] = FBi;
out[C] = FCr;
out[C + 1] = FCi;
out[D] = FDr;
out[D + 1] = FDi;
}
}
}
};
// radix-2 implementation
//
// NOTE: Only called for len=4
FFT.prototype._singleTransform2 = function _singleTransform2(outOff, off,
step) {
const out = this._out;
const data = this._data;
const evenR = data[off];
const evenI = data[off + 1];
const oddR = data[off + step];
const oddI = data[off + step + 1];
const leftR = evenR + oddR;
const leftI = evenI + oddI;
const rightR = evenR - oddR;
const rightI = evenI - oddI;
out[outOff] = leftR;
out[outOff + 1] = leftI;
out[outOff + 2] = rightR;
out[outOff + 3] = rightI;
};
// radix-4
//
// NOTE: Only called for len=8
FFT.prototype._singleTransform4 = function _singleTransform4(outOff, off,
step) {
const out = this._out;
const data = this._data;
const inv = this._inv ? -1 : 1;
const step2 = step * 2;
const step3 = step * 3;
// Original values
const Ar = data[off];
const Ai = data[off + 1];
const Br = data[off + step];
const Bi = data[off + step + 1];
const Cr = data[off + step2];
const Ci = data[off + step2 + 1];
const Dr = data[off + step3];
const Di = data[off + step3 + 1];
// Pre-Final values
const T0r = Ar + Cr;
const T0i = Ai + Ci;
const T1r = Ar - Cr;
const T1i = Ai - Ci;
const T2r = Br + Dr;
const T2i = Bi + Di;
const T3r = inv * (Br - Dr);
const T3i = inv * (Bi - Di);
// Final values
const FAr = T0r + T2r;
const FAi = T0i + T2i;
const FBr = T1r + T3i;
const FBi = T1i - T3r;
const FCr = T0r - T2r;
const FCi = T0i - T2i;
const FDr = T1r - T3i;
const FDi = T1i + T3r;
out[outOff] = FAr;
out[outOff + 1] = FAi;
out[outOff + 2] = FBr;
out[outOff + 3] = FBi;
out[outOff + 4] = FCr;
out[outOff + 5] = FCi;
out[outOff + 6] = FDr;
out[outOff + 7] = FDi;
};
// Real input radix-4 implementation
FFT.prototype._realTransform4 = function _realTransform4() {
var out = this._out;
var size = this._csize;
// Initial step (permute and transform)
var width = this._width;
var step = 1 << width;
var len = (size / step) << 1;
var outOff;
var t;
var bitrev = this._bitrev;
if (len === 4) {
for (outOff = 0, t = 0; outOff < size; outOff += len, t++) {
const off = bitrev[t];
this._singleRealTransform2(outOff, off >>> 1, step >>> 1);
}
} else {
// len === 8
for (outOff = 0, t = 0; outOff < size; outOff += len, t++) {
const off = bitrev[t];
this._singleRealTransform4(outOff, off >>> 1, step >>> 1);
}
}
// Loop through steps in decreasing order
var inv = this._inv ? -1 : 1;
var table = this.table;
for (step >>= 2; step >= 2; step >>= 2) {
len = (size / step) << 1;
var halfLen = len >>> 1;
var quarterLen = halfLen >>> 1;
var hquarterLen = quarterLen >>> 1;
// Loop through offsets in the data
for (outOff = 0; outOff < size; outOff += len) {
for (var i = 0, k = 0; i <= hquarterLen; i += 2, k += step) {
var A = outOff + i;
var B = A + quarterLen;
var C = B + quarterLen;
var D = C + quarterLen;
// Original values
var Ar = out[A];
var Ai = out[A + 1];
var Br = out[B];
var Bi = out[B + 1];
var Cr = out[C];
var Ci = out[C + 1];
var Dr = out[D];
var Di = out[D + 1];
// Middle values
var MAr = Ar;
var MAi = Ai;
var tableBr = table[k];
var tableBi = inv * table[k + 1];
var MBr = Br * tableBr - Bi * tableBi;
var MBi = Br * tableBi + Bi * tableBr;
var tableCr = table[2 * k];
var tableCi = inv * table[2 * k + 1];
var MCr = Cr * tableCr - Ci * tableCi;
var MCi = Cr * tableCi + Ci * tableCr;
var tableDr = table[3 * k];
var tableDi = inv * table[3 * k + 1];
var MDr = Dr * tableDr - Di * tableDi;
var MDi = Dr * tableDi + Di * tableDr;
// Pre-Final values
var T0r = MAr + MCr;
var T0i = MAi + MCi;
var T1r = MAr - MCr;
var T1i = MAi - MCi;
var T2r = MBr + MDr;
var T2i = MBi + MDi;
var T3r = inv * (MBr - MDr);
var T3i = inv * (MBi - MDi);
// Final values
var FAr = T0r + T2r;
var FAi = T0i + T2i;
var FBr = T1r + T3i;
var FBi = T1i - T3r;
out[A] = FAr;
out[A + 1] = FAi;
out[B] = FBr;
out[B + 1] = FBi;
// Output final middle point
if (i === 0) {
var FCr = T0r - T2r;
var FCi = T0i - T2i;
out[C] = FCr;
out[C + 1] = FCi;
continue;
}
// Do not overwrite ourselves
if (i === hquarterLen)
continue;
// In the flipped case:
// MAi = -MAi
// MBr=-MBi, MBi=-MBr
// MCr=-MCr
// MDr=MDi, MDi=MDr
var ST0r = T1r;
var ST0i = -T1i;
var ST1r = T0r;
var ST1i = -T0i;
var ST2r = -inv * T3i;
var ST2i = -inv * T3r;
var ST3r = -inv * T2i;
var ST3i = -inv * T2r;
var SFAr = ST0r + ST2r;
var SFAi = ST0i + ST2i;
var SFBr = ST1r + ST3i;
var SFBi = ST1i - ST3r;
var SA = outOff + quarterLen - i;
var SB = outOff + halfLen - i;
out[SA] = SFAr;
out[SA + 1] = SFAi;
out[SB] = SFBr;
out[SB + 1] = SFBi;
}
}
}
};
// radix-2 implementation
//
// NOTE: Only called for len=4
FFT.prototype._singleRealTransform2 = function _singleRealTransform2(outOff,
off,
step) {
const out = this._out;
const data = this._data;
const evenR = data[off];
const oddR = data[off + step];
const leftR = evenR + oddR;
const rightR = evenR - oddR;
out[outOff] = leftR;
out[outOff + 1] = 0;
out[outOff + 2] = rightR;
out[outOff + 3] = 0;
};
// radix-4
//
// NOTE: Only called for len=8
FFT.prototype._singleRealTransform4 = function _singleRealTransform4(outOff,
off,
step) {
const out = this._out;
const data = this._data;
const inv = this._inv ? -1 : 1;
const step2 = step * 2;
const step3 = step * 3;
// Original values
const Ar = data[off];
const Br = data[off + step];
const Cr = data[off + step2];
const Dr = data[off + step3];
// Pre-Final values
const T0r = Ar + Cr;
const T1r = Ar - Cr;
const T2r = Br + Dr;
const T3r = inv * (Br - Dr);
// Final values
const FAr = T0r + T2r;
const FBr = T1r;
const FBi = -T3r;
const FCr = T0r - T2r;
const FDr = T1r;
const FDi = T3r;
out[outOff] = FAr;
out[outOff + 1] = 0;
out[outOff + 2] = FBr;
out[outOff + 3] = FBi;
out[outOff + 4] = FCr;
out[outOff + 5] = 0;
out[outOff + 6] = FDr;
out[outOff + 7] = FDi;
};