-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopenPMD_to_gdf.py
539 lines (364 loc) · 16.7 KB
/
openPMD_to_gdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
"""Converter from openPMD to GPT format"""
from __future__ import division
import struct
from datetime import datetime
import time
import re
import argparse
import openpmd_api
def hdf_to_gdf(hdf_file_directory, gdf_file_directory, max_cell_size, species, grid_size):
""" Find hdf file in hdf_file_directory, find gdf_file_directory"""
print('Converting .gdf to .hdf file')
default_max_cell_size = 1000000
if gdf_file_directory == None:
gdf_file_directory = hdf_file_directory[:-3] + '.gdf'
if max_cell_size == None:
max_cell_size = default_max_cell_size
if species == None:
species = ''
series_hdf = openpmd_api.Series(hdf_file_directory, openpmd_api.Access.read_only)
print('Destination .gdf directory not specified. Defaulting to ' + gdf_file_directory)
with open(gdf_file_directory, 'wb') as gdf_file:
hdf_file_to_gdf_file(gdf_file, series_hdf, max_cell_size, species, grid_size)
gdf_file.close()
print('Converting .hdf to .gdf file... Complete.')
def hdf_file_to_gdf_file(gdf_file, series_hdf, max_cell_size, species, grid_size):
""" Convert from hdf file to gdf file """
add_gdf_id(gdf_file)
add_time_root_attribute(gdf_file, series_hdf)
add_creator_name_root_attribute(gdf_file, series_hdf)
add_dest_name_root_attribute(gdf_file, series_hdf)
add_required_version_root_attribute(gdf_file, series_hdf)
write_first_block(gdf_file)
write_file(series_hdf, gdf_file, max_cell_size, species, grid_size)
def write_first_block(gdf_file):
""" Write required empty first block """
name = '00'
chars_name = []
for c in name:
chars_name.append(c)
for s in chars_name:
s_pack = struct.pack('c', s.encode('ascii'))
gdf_file.write(s_pack)
def decode_name(attribute_name):
""" Decode name from binary """
decoding_name = attribute_name.decode('ascii', errors='ignore')
decoding_name = re.sub(r'\W+', '', decoding_name)
return decoding_name
def get_particles_name(hdf_file):
""" Get name of particles group """
particles_name = ''
if hdf_file.attrs.get('particlesPath') != None:
particles_name = hdf_file.attrs.get('particlesPath')
particles_name = decode_name(particles_name)
else:
particles_name = 'particles'
return particles_name
class Name_of_arrays:
""" Storage of datasets in h5 file """
dict_datasets = {'momentum/x': 'Bx',
'momentum/y': 'By',
'momentum/z': 'Bz',
'position/x': 'x',
'position/y': 'y',
'position/z': 'z',
'id': 'ID',
'charge': 'q',
'weighting': 'nmacro',
'mass': 'm'}
class Getting_absolute_coordinates:
def __init__(self, particle_spices, axis):
self.unit_si_offset = particle_spices["positionOffset"][axis].unit_SI
self.unit_si_position = particle_spices["position"][axis].unit_SI
def __call__(self, value):
absolute_coord = value[0] * self.unit_si_position + value[1] * self.unit_si_offset
return absolute_coord
class Getting_absolute_momentum:
def __init__(self, particle_spices, axis):
self.unit_si_momentum = particle_spices["momentum"][axis].unit_SI
def __call__(self, value):
return value * self.unit_si_momentum
class Read_momentum:
def __init__(self, series, particle_spices, axis):
self.particle_spices = particle_spices
self.series = series
self.axis = axis
def __call__(self, idx_start, idx_end):
current_values = self.particle_spices["momentum"][self.axis][idx_start:idx_end]
self.series.flush()
return current_values
class Read_coordinate:
def __init__(self, series, particle_spices, axis):
self.series = series
self.axis = axis
self.particle_spices = particle_spices
def __call__(self, idx_start, idx_end):
position = self.particle_spices["position"][self.axis][idx_start:idx_end]
offset = self.particle_spices["positionOffset"][self.axis][idx_start:idx_end]
self.series.flush()
result = list(zip(position, offset))
return result
def write_scalar_dataset(gdf_file, particle_species, size_dataset, max_cell_size, name_scalar):
if not check_item_exist(particle_species, name_scalar):
return
SCALAR = openpmd_api.Mesh_Record_Component.SCALAR
mass = particle_species[name_scalar][SCALAR]
value = mass.get_attribute("value")
mass_unit = mass.get_attribute("unitSI")
write_double_dataset_values(gdf_file, Name_of_arrays.dict_datasets.get(name_scalar),
size_dataset, value * mass_unit, max_cell_size)
def write_weight(series, gdf_file, particle_species, max_cell_size):
name = "nmacro"
write_dataset_header(name, gdf_file)
SCALAR = openpmd_api.Mesh_Record_Component.SCALAR
weights = particle_species["weighting"][SCALAR]
size = weights.shape[0]
size_bin = struct.pack('i', int(size * 8))
gdf_file.write(size_bin)
number_cells = int(size / max_cell_size)
for i in range(1, number_cells + 1):
idx_start = (i - 1) * max_cell_size
idx_end = i * max_cell_size
current_values = weights[idx_start:idx_end]
series.flush()
type_size = str(max_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *current_values))
idx_start = number_cells * max_cell_size
idx_end = size
current_values = weights[idx_start:idx_end]
series.flush()
last_cell_size = size - number_cells * max_cell_size
type_size = str(last_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *current_values))
def get_coordinates_size(particle_species):
momentum_values = particle_species["position"]
size = 0
for value in momentum_values.items():
size = value[1].shape[0]
return size
def compute_r_macro(particle_species, unit_grid_spacing):
particle_shape = particle_species.get_attribute("particleShape")
species_grid_spacing = [i * particle_shape for i in unit_grid_spacing]
r_macro = min(species_grid_spacing)/2. #convert_diametr to radius
return r_macro
def write_particles_type(series, particle_species, gdf_file, max_cell_size, unit_grid_spacing):
iterate_momentum(series, particle_species, gdf_file, max_cell_size)
iterate_coords(series, particle_species, gdf_file, max_cell_size)
size_dataset = get_coordinates_size(particle_species)
write_scalar_dataset(gdf_file, particle_species, size_dataset, max_cell_size, "mass")
write_scalar_dataset(gdf_file, particle_species, size_dataset, max_cell_size, "charge")
write_weight(series, gdf_file, particle_species, max_cell_size)
particle_species.get_attribute("particleShape")
r_macro = compute_r_macro(particle_species, unit_grid_spacing)
write_double_dataset_values(gdf_file, "rmacro", size_dataset, r_macro, max_cell_size)
def check_item_exist(particle_species, name_item):
item_exist = False
for value in particle_species.items():
if value[0] == name_item:
item_exist = True
return item_exist
def get_field_sizes(iteration, grid_size):
attrs = []
for attr in iteration.meshes:
attrs.append(attr)
unit_grid_spacing = []
grid_size = 1.
if len(iteration.meshes) == 0:
unit_grid_spacing.append(grid_size)
return unit_grid_spacing
first_mesh = iteration.meshes[attrs[0]]
for i in range(0, len(first_mesh.grid_spacing)):
unit_grid_spacing.append(first_mesh.grid_unit_SI * first_mesh.grid_spacing[i])
return unit_grid_spacing
def all_species(series, iteration, gdf_file, max_cell_size, grid_size):
unit_grid_spacing = get_field_sizes(iteration, grid_size)
for name_group in iteration.particles:
if not (check_item_exist(iteration.particles[name_group], "momentum") and
check_item_exist(iteration.particles[name_group], "position")):
continue
write_ascii_name('var', len(name_group), gdf_file, name_group)
write_particles_type(series, iteration.particles[name_group], gdf_file, max_cell_size, unit_grid_spacing)
def one_type_species(series, iteration, gdf_file, max_cell_size, species, grid_size):
for name_group in iteration.particles:
if name_group == species:
if not (check_item_exist(iteration.particles[name_group], "momentum") and
check_item_exist(iteration.particles[name_group], "position")):
continue
unit_grid_spacing = get_field_sizes(iteration, grid_size)
write_ascii_name('var', len(name_group), gdf_file, name_group)
write_particles_type(series, iteration.particles[name_group], gdf_file, max_cell_size, unit_grid_spacing)
def write_data(series, iteration, gdf_file, max_cell_size, species, grid_size):
time = iteration.time
write_float('time', gdf_file, float(time))
if species == '':
all_species(series, iteration, gdf_file, max_cell_size, grid_size)
else:
one_type_species(series, iteration, gdf_file, max_cell_size, species, grid_size)
def write_file(series_hdf, gdf_file, max_cell_size, species, grid_size):
for iteration in series_hdf.iterations:
write_data(series_hdf, series_hdf.iterations[iteration], gdf_file, max_cell_size, species, grid_size)
def write_dataset_values(series, reading_absolute, geting_absolute_values, size, gdf_file, max_cell_size):
number_cells = int(size / max_cell_size)
for i in range(1, number_cells + 1):
idx_start = (i - 1) * max_cell_size
idx_end = i * max_cell_size
current_values = reading_absolute(idx_start, idx_end)
series.flush()
absolute_values = []
for value in current_values:
absolute_values.append(geting_absolute_values(value))
type_size = str(max_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *absolute_values))
idx_start = number_cells * max_cell_size
idx_end = size
current_values = reading_absolute(idx_start, idx_end)
series.flush()
absolute_values = []
for value in current_values:
absolute_values.append(geting_absolute_values(value))
last_cell_size = size - number_cells * max_cell_size
type_size = str(last_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *absolute_values))
def write_block_header(value, name_vector, gdf_file):
name_value = value[0]
size = value[1].shape[0]
name_dataset = str(name_vector + name_value)
write_dataset_header(Name_of_arrays.dict_datasets.get(name_dataset), gdf_file)
size_bin = struct.pack('i', int(size * 8))
gdf_file.write(size_bin)
def iterate_momentum(series, particle_species, gdf_file, max_cell_size):
name_vector = "momentum/"
momentum_values = particle_species["momentum"]
for value in momentum_values.items():
write_block_header(value, name_vector, gdf_file)
reading_momentum = Read_momentum(series, particle_species, value[0])
getiings_absolute_momentum = Getting_absolute_momentum(particle_species, value[0])
size = value[1].shape[0]
write_dataset_values(series, reading_momentum, getiings_absolute_momentum, size, gdf_file, max_cell_size)
def iterate_coords(series, particle_species, gdf_file, max_cell_size):
name_vector = "position/"
momentum_values = particle_species["position"]
for value in momentum_values.items():
write_block_header(value, name_vector, gdf_file)
size = value[1].shape[0]
name_value = value[0]
reading_coordinate = Read_coordinate(series, particle_species, name_value)
getiings_absolute_momentum = Getting_absolute_coordinates(particle_species, name_value)
write_dataset_values(series, reading_coordinate, getiings_absolute_momentum, size, gdf_file, max_cell_size)
def write_dataset(gdf_file, absolute_values):
"""" Write dataset of double values """
size = len(absolute_values)
size_bin = struct.pack('i', int(size * 8))
gdf_file.write(size_bin)
type_size = str(size) + 'd'
gdf_file.write(struct.pack(type_size, *absolute_values))
def write_double_dataset_values(gdf_file, name, size_dataset, value, max_cell_size):
"""" Write dataset of double values """
write_dataset_header(name, gdf_file)
size_bin = struct.pack('i', int(size_dataset * 8))
gdf_file.write(size_bin)
number_cells = int(size_dataset / max_cell_size)
for i in range(1, number_cells + 1):
array_dataset = [value] * max_cell_size
type_size = str(max_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *array_dataset))
last_cell_size = size_dataset - number_cells * max_cell_size
array_dataset = [value] * last_cell_size
type_size = str(last_cell_size) + 'd'
gdf_file.write(struct.pack(type_size, *array_dataset))
def write_ascii_name(name, size, gdf_file, ascii_name):
""" Write ascii name of value """
write_string(name, gdf_file)
type_bin = struct.pack('i', int(1025))
gdf_file.write(type_bin)
size_bin = struct.pack('i', int(size))
gdf_file.write(size_bin)
charlist = list(ascii_name)
type_size = str(size) + 's'
gdf_file.write(struct.pack(type_size, ascii_name.encode('ascii')))
def write_float(name, gdf_file, value):
write_string(name, gdf_file)
type_bin = struct.pack('i', int(1283))
gdf_file.write(type_bin)
size_bin = struct.pack('i', 8)
gdf_file.write(size_bin)
gdf_file.write(struct.pack('d', value))
def write_dataset_header(name, gdf_file):
write_string(name, gdf_file)
type_bin = struct.pack('i', int(2051))
gdf_file.write(type_bin)
class Block_types:
""" Block types for each type in GDF file"""
directory = 256 # Directory entry start
edir = 512 # Directory entry end
single_value = 1024 # Single valued
array = 2048 # Array
ascii_character = int('0001', 16) # ASCII character
signed_long = int('0002', 16) # Signed long
double_type = int('0003', 16) # Double
no_data = int('0010', 16) # No data
def add_gdf_id(gdf_file):
""" Add required indefication block of gdf file"""
gdf_id_byte = struct.pack('i', Constants.GDFID)
gdf_file.write(gdf_id_byte)
def add_time_root_attribute(gdf_file, series_hdf):
""" Add time of creation to root"""
data_name = series_hdf.date
time_format = datetime.strptime(data_name, "%Y-%m-%d %H:%M:%S %z")
seconds = time.mktime(time_format.timetuple())
time_created_byte = struct.pack('i', int(seconds))
gdf_file.write(time_created_byte)
def add_creator_name_root_attribute(gdf_file, series_hdf):
""" Add name of creator to root"""
software = series_hdf.software
write_string(software, gdf_file)
def add_dest_name_root_attribute(gdf_file, hdf_file):
""" Add dest name to root attribute """
destination = 'empty'
write_string(destination, gdf_file)
def add_required_version_root_attribute(gdf_file, series_hdf):
""" Write one iteration to hdf_file """
add_versions('gdf_version', gdf_file, series_hdf, 1, 1)
add_versions('softwareVersion', gdf_file, series_hdf, 3, 0)
add_versions('destination_version', gdf_file, series_hdf)
def add_versions(name, gdf_file, hdf_file, major = 0, minor = 0):
"""Write version of file to gdf file"""
major_bin = struct.pack('B', int(major))
minor_bin = struct.pack('B', int(minor))
gdf_file.write(major_bin)
gdf_file.write(minor_bin)
def RepresentsInt(s):
"""Check that argument is int value"""
try:
int(s)
return True
except ValueError:
return False
def write_string(name, gdf_file):
"""Write string value to gdf file"""
while len(name) < Constants.GDFNAMELEN:
name += chr(0)
chars_name = []
for c in name:
chars_name.append(c)
for s in chars_name:
s_pack = struct.pack('c', s.encode('ascii'))
gdf_file.write(s_pack)
class Constants:
GDFID = 94325877
GDFNAMELEN = 16
if __name__ == "__main__":
""" Parse arguments from command line """
parser = argparse.ArgumentParser(description="conversion from gdf to hdf")
parser.add_argument("-openPMD_input", metavar='openPMD_input', type=str,
help="hdf file for conversion")
parser.add_argument("-gdf", metavar='gdf_file', type=str,
help="result gdf file")
parser.add_argument("-max_cell", metavar='max_cell', type=str,
help="result gdf file")
parser.add_argument("-species", metavar='species', type=str,
help="one species to convert")
parser.add_argument("-grid_size", metavar='grid_size', type=str,
help="size of grid cell in SI")
args = parser.parse_args()
hdf_to_gdf(args.openPMD_input, args.gdf, args.max_cell, args.species, args.grid_size)