-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanualSearch.py
119 lines (105 loc) · 5.56 KB
/
manualSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from torch import nn, optim
import os
import logging
from main import MAX_SHAPE
import models
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import plotFigure
from snntorch import surrogate
from datasets import customDataset
from models import CustomCNN, train, test
EXPERIMENT_NAME = "Threshold_Sparse"
MODEL_NAME = "SCNN"
LOG_PATH = "Expt/expt.log"
PROFILE_LOG = "Expt/exptProfile.log"
CHECKPOINT_PATH = "Expt/checkpoints"
MAX_SHAPE = (32,32)
formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(name)s:%(message)s')
# Search Space
T_SPACE = [1, 8, 10, 15, 18, 20, 50, 100]
THRESHOLD_SPACE = [0.0, 0.5, 1.0, 5.0, 10.0, 15.0]
BETA_SPACE = [0, 0.2, 0.5, 0.8, 1.0]
# Device config
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using {device} on {torch.cuda.get_device_name(0)} :D ")
def setupLogger(name, logPath, level=logging.INFO):
handler = logging.FileHandler(logPath)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
def hyperStudyMain():
# Check logging and directories
if not os.path.exists(LOG_PATH):
open(LOG_PATH, 'a').close()
if not os.path.exists(PROFILE_LOG):
open(PROFILE_LOG, 'a').close()
if not os.path.exists(CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
logger = setupLogger('ResultsLogger', LOG_PATH)
profLogger = setupLogger("ProfileLogger", PROFILE_LOG)
# Parameters of interest
defaultParam = {
"batchsize": 16,
"timestep": 10,
"threshold": 1,
"beta":0.5,
"epochNum":20,
"lossFn": nn.CrossEntropyLoss(),
"learningRate": 0.001,
}
# Import data
train_ds = customDataset.fetchData("transformedData/mfcc/trg")
test_ds = customDataset.fetchData("transformedData/mfcc/test")
train_num = train_ds.__len__()
test_num = test_ds.__len__()
full_ds_len = train_num + test_num
print(f"Train data: {train_num}")
print(f"Test data: {test_num}")
num_classes = 10
train_dl = DataLoader(train_ds, batch_size=defaultParam["batchsize"], shuffle=True)
test_dl = DataLoader(test_ds, batch_size=defaultParam["batchsize"], shuffle=True)
print("-----Loaded-----\n")
# Model
train_loss_hist = []
train_accu_hist = []
sparseMode = False
if "sparse" in EXPERIMENT_NAME.lower():
sparseMode = True
if "time" in EXPERIMENT_NAME.lower():
for timestep in tqdm(T_SPACE):
model = CustomCNN.customSNetv2(timestep, defaultParam["beta"], num_class=num_classes).to(device)
logInfo = EXPERIMENT_NAME + str(timestep)
optimizer = optim.Adam(model.parameters(), lr=defaultParam["learningRate"], betas=(0.9, 0.999))
model, train_loss_hist, train_accu_hist, iterCount = train.trainSNet(device, model, train_dl,
defaultParam["epochNum"], optimizer, defaultParam["lossFn"], timestep,
train_loss_hist, train_accu_hist,
CHECKPOINT_PATH, MODEL_NAME)
test.testSNet(model, test_dl, device, defaultParam["lossFn"], timestep, test_num, defaultParam["epochNum"], MODEL_NAME, logInfo, logger, profLogger, CHECKPOINT_PATH, sparseMode)
elif "threshold" in EXPERIMENT_NAME.lower():
for currThres in tqdm(THRESHOLD_SPACE):
model = CustomCNN.customSNetv2(defaultParam["timestep"], defaultParam["beta"], num_class=num_classes, threshold=currThres).to(device)
logInfo = EXPERIMENT_NAME + str(currThres)
optimizer = optim.Adam(model.parameters(), lr=defaultParam["learningRate"], betas=(0.9, 0.999))
model, train_loss_hist, train_accu_hist, iterCount = train.trainSNet(device, model, train_dl,
defaultParam["epochNum"], optimizer, defaultParam["lossFn"], defaultParam["timestep"],
train_loss_hist, train_accu_hist,
CHECKPOINT_PATH, MODEL_NAME)
test.testSNet(model, test_dl, device, defaultParam["lossFn"], defaultParam["timestep"], test_num, defaultParam["epochNum"], MODEL_NAME, logInfo, logger, profLogger, CHECKPOINT_PATH, sparseMode)
elif "beta" in EXPERIMENT_NAME.lower():
for beta in tqdm(BETA_SPACE):
model = CustomCNN.customSNetv2(defaultParam["timestep"], beta, num_class=num_classes, threshold=defaultParam["threshold"]).to(device)
logInfo = EXPERIMENT_NAME + str(beta)
optimizer = optim.Adam(model.parameters(), lr=defaultParam["learningRate"], betas=(0.9, 0.999))
model, train_loss_hist, train_accu_hist, iterCount = train.trainSNet(device, model, train_dl,
defaultParam["epochNum"], optimizer, defaultParam["lossFn"], defaultParam["timestep"],
train_loss_hist, train_accu_hist,
CHECKPOINT_PATH, MODEL_NAME)
test.testSNet(model, test_dl, device, defaultParam["lossFn"], defaultParam["timestep"], test_num, defaultParam["epochNum"], MODEL_NAME, logInfo, logger, profLogger, CHECKPOINT_PATH, sparseMode)
else:
print("Design space not set up yet")
if __name__=='__main__':
hyperStudyMain()