forked from linebender/vello
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpathseg.wgsl
203 lines (177 loc) · 6.69 KB
/
pathseg.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// Path segment decoding for the full case.
// In the simple case, path segments are decoded as part of the coarse
// path rendering stage. In the full case, they are separated, as the
// decoding process also generates bounding boxes, and those in turn are
// used for tile allocation and clipping; actual coarse path rasterization
// can't proceed until those are complete.
// There's some duplication of the decoding code but we won't worry about
// that just now. Perhaps it could be factored more nicely later.
#import config
#import pathtag
#import cubic
@group(0) @binding(0)
var<uniform> config: Config;
@group(0) @binding(1)
var<storage> scene: array<u32>;
@group(0) @binding(2)
var<storage> tag_monoids: array<TagMonoid>;
struct AtomicPathBbox {
x0: atomic<i32>,
y0: atomic<i32>,
x1: atomic<i32>,
y1: atomic<i32>,
linewidth: f32,
trans_ix: u32,
}
@group(0) @binding(3)
var<storage, read_write> path_bboxes: array<AtomicPathBbox>;
@group(0) @binding(4)
var<storage, read_write> cubics: array<Cubic>;
// Monoid is yagni, for future optimization
// struct BboxMonoid {
// bbox: vec4<f32>,
// flags: u32,
// }
// let FLAG_RESET_BBOX = 1u;
// let FLAG_SET_BBOX = 2u;
// fn combine_bbox_monoid(a: BboxMonoid, b: BboxMonoid) -> BboxMonoid {
// var c: BboxMonoid;
// c.bbox = b.bbox;
// // TODO: previous-me thought this should be gated on b & SET_BBOX == false also
// if (a.flags & FLAG_RESET_BBOX) == 0u && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y {
// c.bbox = a.bbox;
// } else if (a.flags & FLAG_RESET_BBOX) == 0u && (b.flags & FLAG_SET_BBOX) == 0u ||
// (a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y)
// {
// c.bbox = vec4<f32>(min(a.bbox.xy, c.bbox.xy), max(a.bbox.xw, c.bbox.zw));
// }
// c.flags = (a.flags & FLAG_SET_BBOX) | b.flags;
// c.flags |= (a.flags & FLAG_RESET_BBOX) << 1u;
// return c;
// }
// fn bbox_monoid_identity() -> BboxMonoid {
// return BboxMonoid();
// }
var<private> pathdata_base: u32;
fn read_f32_point(ix: u32) -> vec2<f32> {
let x = bitcast<f32>(scene[pathdata_base + ix]);
let y = bitcast<f32>(scene[pathdata_base + ix + 1u]);
return vec2(x, y);
}
fn read_i16_point(ix: u32) -> vec2<f32> {
let raw = scene[pathdata_base + ix];
let x = f32(i32(raw << 16u) >> 16u);
let y = f32(i32(raw) >> 16u);
return vec2(x, y);
}
struct Transform {
matrx: vec4<f32>,
translate: vec2<f32>,
}
fn read_transform(transform_base: u32, ix: u32) -> Transform {
let base = transform_base + ix * 6u;
let c0 = bitcast<f32>(scene[base]);
let c1 = bitcast<f32>(scene[base + 1u]);
let c2 = bitcast<f32>(scene[base + 2u]);
let c3 = bitcast<f32>(scene[base + 3u]);
let c4 = bitcast<f32>(scene[base + 4u]);
let c5 = bitcast<f32>(scene[base + 5u]);
let matrx = vec4(c0, c1, c2, c3);
let translate = vec2(c4, c5);
return Transform(matrx, translate);
}
fn transform_apply(transform: Transform, p: vec2<f32>) -> vec2<f32> {
return transform.matrx.xy * p.x + transform.matrx.zw * p.y + transform.translate;
}
fn round_down(x: f32) -> i32 {
return i32(floor(x));
}
fn round_up(x: f32) -> i32 {
return i32(ceil(x));
}
@compute @workgroup_size(256)
fn main(
@builtin(global_invocation_id) global_id: vec3<u32>,
@builtin(local_invocation_id) local_id: vec3<u32>,
) {
let ix = global_id.x;
let tag_word = scene[config.pathtag_base + (ix >> 2u)];
pathdata_base = config.pathdata_base;
let shift = (ix & 3u) * 8u;
var tm = reduce_tag(tag_word & ((1u << shift) - 1u));
tm = combine_tag_monoid(tag_monoids[ix >> 2u], tm);
var tag_byte = (tag_word >> shift) & 0xffu;
let out = &path_bboxes[tm.path_ix];
let linewidth = bitcast<f32>(scene[config.linewidth_base + tm.linewidth_ix]);
if (tag_byte & PATH_TAG_PATH) != 0u {
(*out).linewidth = linewidth;
(*out).trans_ix = tm.trans_ix;
}
// Decode path data
let seg_type = tag_byte & PATH_TAG_SEG_TYPE;
if seg_type != 0u {
var p0: vec2<f32>;
var p1: vec2<f32>;
var p2: vec2<f32>;
var p3: vec2<f32>;
if (tag_byte & PATH_TAG_F32) != 0u {
p0 = read_f32_point(tm.pathseg_offset);
p1 = read_f32_point(tm.pathseg_offset + 2u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_f32_point(tm.pathseg_offset + 4u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_f32_point(tm.pathseg_offset + 6u);
}
}
} else {
p0 = read_i16_point(tm.pathseg_offset);
p1 = read_i16_point(tm.pathseg_offset + 1u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_i16_point(tm.pathseg_offset + 2u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_i16_point(tm.pathseg_offset + 3u);
}
}
}
let transform = read_transform(config.transform_base, tm.trans_ix);
p0 = transform_apply(transform, p0);
p1 = transform_apply(transform, p1);
var bbox = vec4(min(p0, p1), max(p0, p1));
// Degree-raise
if seg_type == PATH_TAG_LINETO {
p3 = p1;
p2 = mix(p3, p0, 1.0 / 3.0);
p1 = mix(p0, p3, 1.0 / 3.0);
} else if seg_type >= PATH_TAG_QUADTO {
p2 = transform_apply(transform, p2);
bbox = vec4(min(bbox.xy, p2), max(bbox.zw, p2));
if seg_type == PATH_TAG_CUBICTO {
p3 = transform_apply(transform, p3);
bbox = vec4(min(bbox.xy, p3), max(bbox.zw, p3));
} else {
p3 = p2;
p2 = mix(p1, p2, 1.0 / 3.0);
p1 = mix(p1, p0, 1.0 / 3.0);
}
}
var stroke = vec2(0.0, 0.0);
if linewidth >= 0.0 {
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
// This is the correct bounding box, but we're not handling rendering
// in the isotropic case, so it may mismatch.
stroke = 0.5 * linewidth * vec2(length(transform.matrx.xz), length(transform.matrx.yw));
bbox += vec4(-stroke, stroke);
}
let flags = u32(linewidth >= 0.0);
cubics[global_id.x] = Cubic(p0, p1, p2, p3, stroke, tm.path_ix, flags);
// Update bounding box using atomics only. Computing a monoid is a
// potential future optimization.
if bbox.z > bbox.x || bbox.w > bbox.y {
atomicMin(&(*out).x0, round_down(bbox.x));
atomicMin(&(*out).y0, round_down(bbox.y));
atomicMax(&(*out).x1, round_up(bbox.z));
atomicMax(&(*out).y1, round_up(bbox.w));
}
}
}