forked from mlfoundations/dclm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdedup_jsonl.py
355 lines (298 loc) · 13.4 KB
/
dedup_jsonl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import resource
import time
from typing import List
import traceback
import subprocess
import boto3
import numpy as np
import psutil
from cloudpathlib import S3Path
import ray
from ray._private.internal_api import memory_summary
from ray.data._internal.util import _check_pyarrow_version
from ray.data.block import Block, BlockMetadata
from ray.data.context import DataContext
from ray.data.datasource import Datasource, ReadTask
from baselines.core.file_utils import write_jsonl, read_jsonl, makedirs_if_missing
from collections import defaultdict
import hashlib
from io import BytesIO
import tarfile
import simdjson
import zstandard as zstd
import gzip
from baselines.mappers.core_utils import DEDUP_NORMALIZERS
import argparse
# Helpers to deal with cases where content_key emits only one value (e.g. for url dedup)
split_helper = lambda ck: ck if isinstance(ck, list) else [ck]
join_helper = lambda ck: ck[0]
def tar_to_entries(
batch, input_overlap, content_key="text", normalize=None, selection_key=None, selection_normalize=None
):
all_rows = {"uid": [], "s3_filename": [], "local_index": []}
if selection_key is not None:
all_rows[selection_key] = []
for idx in range(len(batch["bytes"])):
if batch["path"][idx].endswith(".zstd"):
with zstd.ZstdDecompressor().stream_reader(batch["bytes"][idx]) as reader:
batch["bytes"][idx] = reader.read()
jsonl_bytes = batch["bytes"][idx]
jsons = [simdjson.loads(j) for j in jsonl_bytes.decode().splitlines()]
if normalize is not None:
uids = [
hashlib.md5(str(normalize(content_unit)).encode()).hexdigest()
for j in jsons
for content_unit in split_helper(j[content_key])
]
else:
uids = [
hashlib.md5(content_unit.encode("utf-8")).hexdigest()
for j in jsons
for content_unit in split_helper(j[content_key])
]
path = batch["path"][idx]
path = path[len(input_overlap) :]
all_rows["uid"].extend(uids)
all_rows["s3_filename"].extend(len(uids) * [path])
# could combine below with uids generation and break into two lists after
all_rows["local_index"].extend(
[
(file_index, content_index)
for file_index, j in enumerate(jsons)
for content_index in range(len(split_helper(j[content_key])))
]
)
if selection_key is not None:
selection = [j[selection_key] for j in jsons for content_index in range(len(split_helper(j[content_key])))]
if selection_normalize is not None:
selection = [selection_normalize(s) for s in selection]
all_rows[selection_key].extend(selection)
return all_rows
def get_dupe_rows(g, selection_key=None, reverse=False):
# assumption that number of duplicates in group are small and hence can call min/max
# return list of duplicates outside of keep_idx for future removal
if len(g) == 1:
return {}
if selection_key is None:
keep_idx = 0
else:
keep_fn = np.argmax if reverse else np.argmin
keep_idx = keep_fn(g[selection_key])
return {
# "s3_filename": g["s3_filename"].drop([keep_idx]),
# "local_index": g["local_index"].drop([keep_idx]),
"s3_filename": np.concatenate((g["s3_filename"][:keep_idx], g["s3_filename"][keep_idx + 1 :])),
"local_index": np.concatenate((g["local_index"][:keep_idx], g["local_index"][keep_idx + 1 :])),
}
def drop_dupe_rows(g, output_path, content_key, input_overlap, local_stats_dir):
# Download s3_filename from S3.
# Remove duplicates in local_index.
# Upload back to s3.
# (make sure not to upload directly back to the same filename)
drop_indices = g["local_index"]
s3_filename = input_overlap + g["s3_filename"][0]
input_parts = s3_filename.replace("s3://", "").split("/")
bucket = input_parts.pop(0)
key = "/".join(input_parts)
s3 = boto3.resource("s3")
obj = s3.Object(bucket, key)
jsonl_bytes_in = obj.get()["Body"].read()
if any(s3_filename.endswith(z) for z in (".zst", ".zstd")):
with zstd.ZstdDecompressor().stream_reader(jsonl_bytes_in) as reader:
jsonl_bytes_in = reader.read()
elif s3_filename.endswith(".gz"):
jsonl_bytes_in = gzip.decompress(jsonl_bytes_in)
jsons_in = [simdjson.loads(j) for j in jsonl_bytes_in.decode().splitlines()]
num_jsons_in = len(jsons_in)
# build mapping of drop_indices from file_index to list of content_index
index_map = defaultdict(list)
tmp = [index_map[file_index].append(content_index) for file_index, content_index in drop_indices]
for file_index in range(len(jsons_in)):
jsons_in[file_index][content_key] = split_helper(jsons_in[file_index][content_key])
# remove content
for file_index, drop_content_indices in index_map.items():
jsons_in[file_index][content_key] = [
c
for content_index, c in enumerate(jsons_in[file_index][content_key])
if content_index not in drop_content_indices
]
# remove if any json is now empty
jsons_in = [j for j in jsons_in if len(j[content_key]) != 0]
# if all rows have single entries, collapse content_key into a string instead of a list, assumes that downstream joiners in local chunks will be able to robustly handle cases where content_key is already not in a list
all_single_element = all(len(json[content_key]) == 1 for json in jsons_in)
for file_index in range(len(jsons_in)):
jsons_in[file_index][content_key] = (
join_helper(jsons_in[file_index][content_key]) if all_single_element else jsons_in[file_index][content_key]
)
json_strs_out = [simdjson.dumps(j) for j in jsons_in]
# kept = len(json_strs_out) # count jsons kept, not content units
kept = sum(
[len(j[content_key]) for j in jsons_in]
) # count content units kept, not jsons; len(g["local_index"]) is number dropped
if any(s3_filename.endswith(z) for z in (".zst", ".zstd")):
with zstd.ZstdCompressor().stream_reader(("\n".join(json_strs_out)).encode("UTF-8")) as reader:
jsonl_bytes_out = BytesIO(reader.read())
elif s3_filename.endswith(".gz"):
jsonl_bytes_out = BytesIO(gzip.compress(("\n".join(json_strs_out)).encode("UTF-8")))
else:
jsonl_bytes_out = BytesIO(("\n".join(json_strs_out)).encode("UTF-8"))
s3_client = boto3.client("s3")
output_parts = output_path.replace("s3://", "").split("/")
out_bucket = output_parts.pop(0)
output_parts += input_parts[-(len(input_parts) - len(output_parts)) :]
out_key = "/".join(output_parts)
s3_client.upload_fileobj(jsonl_bytes_out, out_bucket, out_key)
# Update local stats files
shard_name = g["s3_filename"][0].replace("_processed.jsonl", ".jsonl").split(".jsonl")[0]
stats_out_path = os.path.join(local_stats_dir, shard_name.lstrip("/") + "_stats.jsonl")
write_jsonl(
[
{
"name": "exact_dedup",
"content_key": content_key,
"pages_in": num_jsons_in,
"pages_out": len(json_strs_out),
}
],
stats_out_path,
"a",
)
return {"s3_filename": [f"s3://{s3_filename}"], "kept": [kept]}
@ray.remote(max_calls=10)
def write_unmodified_local_stats(s3_filepath, local_stats_dir, input_overlap, content_key):
s3_filepath = s3_filepath.replace("s3://", "").replace(input_overlap, "")
shard_name = s3_filepath.replace("_processed.jsonl", ".jsonl").split(".jsonl")[0]
stats_out_path = os.path.join(local_stats_dir, shard_name.lstrip("/") + "_stats.jsonl")
write_jsonl(
[{"name": "exact_dedup", "content_key": content_key, "pages_in": "no_op", "pages_out": "no_op"}],
stats_out_path,
"a",
)
def dedup_jsonl(
input_dir,
shard_files=None,
base_output_path=None,
working_dir=None,
sync_to_input=False,
content_key="text",
normalize=None,
selection_key=None,
selection_normalize=None,
selection_reverse=False,
):
ray.init(ignore_reinit_error=True)
input_overlap = input_dir.replace("s3://", "")
input_dir_strip = input_dir.rstrip("/")
# base_output_path is the FINAL output directory for an overall pipeline involving local chunks and dedup
# Here, it is solely used to locate per-jsonl stats files, while working_dir is where dedup actually outputs to
base_output_path = input_dir if base_output_path is None else base_output_path
local_stats_dir = os.path.join(base_output_path, "stats")
if working_dir is None or input_dir == working_dir:
working_dir = input_dir_strip + "_working"
else:
working_dir.replace("s3://", "").rstrip("/")
if shard_files is None:
input_paths = []
s3_client = boto3.client("s3")
paginator = s3_client.get_paginator("list_objects_v2")
input_parts = input_dir_strip.replace("s3://", "").split("/")
bucket = input_parts.pop(0)
key = "/".join(input_parts) + "/"
pages = paginator.paginate(Bucket=bucket, Prefix=key)
for page in pages:
try:
for obj in page["Contents"]:
path_body = obj["Key"]
if os.path.splitext(path_body)[1] in {".jsonl", ".zstd", ".zst", ".gz"}:
input_paths.append(f"s3://{bucket}/{path_body}")
except KeyError:
print("No files exist")
exit(1)
else:
input_paths = [f"s3://{input_dir_strip.replace('s3://','')}/{b}" for b in shard_files]
input_paths = [p for p in input_paths if all(s not in p for s in ["/stats/", "global_stats.jsonl"])]
ctx = DataContext.get_current()
ctx.execution_options.resource_limits.object_store_memory = float("inf")
ctx.use_push_based_shuffle = True
ray.data.DataContext.get_current().execution_options.verbose_progress = True
start_time = time.time()
if normalize is not None and normalize in DEDUP_NORMALIZERS:
normalize = DEDUP_NORMALIZERS[normalize]
else:
normalize = None
if selection_normalize is not None and selection_normalize in DEDUP_NORMALIZERS:
selection_normalize = DEDUP_NORMALIZERS[selection_normalize]
else:
selection_normalize = None
tar_to_entries_dict = {
"input_overlap": input_overlap,
"content_key": content_key,
"normalize": normalize,
"selection_key": selection_key,
"selection_normalize": selection_normalize,
}
ds = ray.data.read_binary_files(input_paths, include_paths=True).map_batches(
tar_to_entries, batch_size=1, fn_kwargs=tar_to_entries_dict
)
exc = None
ds_stats = None
try:
get_dupe_rows_point = lambda g: get_dupe_rows(g, selection_key, selection_reverse)
ds = ds.groupby("uid").map_groups(get_dupe_rows_point, batch_format="numpy").materialize()
drop_dupe_rows_point = lambda g: drop_dupe_rows(g, working_dir, content_key, input_overlap, local_stats_dir)
ds = ds.groupby("s3_filename").map_groups(drop_dupe_rows_point, batch_format="numpy") # Second sort
# what if a file has no duplicates? then may not be processed above, so we do a sync below
ds_final = ds.materialize()
# kept = ds_final.sum("kept")
files_written = ds_final.count()
# print("Kept: " + str(kept))
ds_stats = ds_final.stats()
except Exception as e:
exc = e
pass
end_time = time.time()
duration = end_time - start_time
print("Finished in", duration)
if ds_stats is not None:
print(ds_stats)
if exc:
raise exc
# TODO set expiration policy for working directories
if files_written == len(input_paths) and not sync_to_input:
# all files changed, no sync/copy needed
return working_dir
else:
# careful: below sync assumes input_dir is not the original
sync_list = ["aws", "s3", "sync", working_dir, input_dir]
process = subprocess.Popen(sync_list)
process.wait()
# Write local stats for the unmodified files
modified_paths = [s["s3_filename"] for s in ds_final.iter_rows()]
unmodified_paths = [s for s in input_paths if s not in modified_paths]
ret = [
write_unmodified_local_stats.remote(u, local_stats_dir, input_overlap, content_key)
for u in unmodified_paths
]
ray.get(ret)
return input_dir
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--input",
help="input path",
type=str,
required=True,
# e.g. assumes this is a folder and will find all jsonls within it; dedup will modify this folder
)
parser.add_argument(
"--content_key", type=str, default="text"
) # should be a list containing units that should be deduplicated
parser.add_argument("--selection_key", type=str, default=None)
parser.add_argument("--normalize", type=str, default=None)
# normalize and selection_normalize are not supported here because they are functions; use by calling function instead of using cli
args = parser.parse_args()
input_dir = args.input
content_key = args.content_key
selection_key = args.selection_key
dedup_jsonl(input_dir, content_key=content_key, selection_key=selection_key, normalize=args.normalize)