forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
227 lines (200 loc) · 8.16 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run NHNet model training and eval."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
from absl import logging
from six.moves import zip
import tensorflow as tf
from official.modeling.hyperparams import params_dict
from official.nlp.nhnet import evaluation
from official.nlp.nhnet import input_pipeline
from official.nlp.nhnet import models
from official.nlp.nhnet import optimizer
from official.nlp.transformer import metrics as transformer_metrics
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
FLAGS = flags.FLAGS
def define_flags():
"""Defines command line flags used by NHNet trainer."""
## Required parameters
flags.DEFINE_enum("mode", "train", ["train", "eval", "train_and_eval"],
"Execution mode.")
flags.DEFINE_string("train_file_pattern", "", "Train file pattern.")
flags.DEFINE_string("eval_file_pattern", "", "Eval file pattern.")
flags.DEFINE_string(
"model_dir", None,
"The output directory where the model checkpoints will be written.")
# Model training specific flags.
flags.DEFINE_enum(
"distribution_strategy", "mirrored", ["tpu", "mirrored"],
"Distribution Strategy type to use for training. `tpu` uses TPUStrategy "
"for running on TPUs, `mirrored` uses GPUs with single host.")
flags.DEFINE_string("tpu", "", "TPU address to connect to.")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer("train_steps", 100000, "Max train steps")
flags.DEFINE_integer("eval_steps", 32, "Number of eval steps per run.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 4, "Total batch size for evaluation.")
flags.DEFINE_integer(
"steps_per_loop", 1000,
"Number of steps per graph-mode loop. Only training step "
"happens inside the loop.")
flags.DEFINE_integer("checkpoint_interval", 2000, "Checkpointing interval.")
flags.DEFINE_integer("len_title", 15, "Title length.")
flags.DEFINE_integer("len_passage", 200, "Passage length.")
flags.DEFINE_integer("num_encoder_layers", 12,
"Number of hidden layers of encoder.")
flags.DEFINE_integer("num_decoder_layers", 12,
"Number of hidden layers of decoder.")
flags.DEFINE_string("model_type", "nhnet",
"Model type to choose a model configuration.")
flags.DEFINE_integer(
"num_nhnet_articles", 5,
"Maximum number of articles in NHNet, only used when model_type=nhnet")
flags.DEFINE_string(
"params_override",
default=None,
help=("a YAML/JSON string or a YAML file which specifies additional "
"overrides over the default parameters"))
# pylint: disable=protected-access
class Trainer(tf.keras.Model):
"""A training only model."""
def __init__(self, model, params):
super(Trainer, self).__init__()
self.model = model
self.params = params
self._num_replicas_in_sync = tf.distribute.get_strategy(
).num_replicas_in_sync
def call(self, inputs, mode="train"):
return self.model(inputs, mode)
def train_step(self, inputs):
"""The logic for one training step."""
with tf.GradientTape() as tape:
logits, _, _ = self(inputs, mode="train", training=True)
targets = models.remove_sos_from_seq(inputs["target_ids"],
self.params.pad_token_id)
loss = transformer_metrics.transformer_loss(logits, targets,
self.params.label_smoothing,
self.params.vocab_size)
# Scales the loss, which results in using the average loss across all
# of the replicas for backprop.
scaled_loss = loss / self._num_replicas_in_sync
tvars = self.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
self.optimizer.apply_gradients(list(zip(grads, tvars)))
return {
"training_loss": loss,
"learning_rate": self.optimizer._decayed_lr(var_dtype=tf.float32)
}
def train(params, strategy, dataset=None):
"""Runs training."""
if not dataset:
dataset = input_pipeline.get_input_dataset(
FLAGS.train_file_pattern,
FLAGS.train_batch_size,
params,
is_training=True,
strategy=strategy)
with strategy.scope():
model = models.create_model(
FLAGS.model_type, params, init_checkpoint=FLAGS.init_checkpoint)
opt = optimizer.create_optimizer(params)
trainer = Trainer(model, params)
model.global_step = opt.iterations
trainer.compile(
optimizer=opt,
experimental_steps_per_execution=FLAGS.steps_per_loop)
summary_dir = os.path.join(FLAGS.model_dir, "summaries")
summary_callback = tf.keras.callbacks.TensorBoard(
summary_dir, update_freq=max(100, FLAGS.steps_per_loop))
checkpoint = tf.train.Checkpoint(model=model, optimizer=opt)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
directory=FLAGS.model_dir,
max_to_keep=10,
step_counter=model.global_step,
checkpoint_interval=FLAGS.checkpoint_interval)
if checkpoint_manager.restore_or_initialize():
logging.info("Training restored from the checkpoints in: %s",
FLAGS.model_dir)
checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
# Trains the model.
steps_per_epoch = min(FLAGS.train_steps, FLAGS.checkpoint_interval)
epochs = FLAGS.train_steps // steps_per_epoch
trainer.fit(
x=dataset,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
callbacks=[summary_callback, checkpoint_callback],
verbose=2)
def run():
"""Runs NHNet using Keras APIs."""
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy, tpu_address=FLAGS.tpu)
if strategy:
logging.info("***** Number of cores used : %d",
strategy.num_replicas_in_sync)
params = models.get_model_params(FLAGS.model_type)
params = params_dict.override_params_dict(
params, FLAGS.params_override, is_strict=True)
params.override(
{
"len_title":
FLAGS.len_title,
"len_passage":
FLAGS.len_passage,
"num_hidden_layers":
FLAGS.num_encoder_layers,
"num_decoder_layers":
FLAGS.num_decoder_layers,
"passage_list":
[chr(ord("b") + i) for i in range(FLAGS.num_nhnet_articles)],
},
is_strict=False)
stats = {}
if "train" in FLAGS.mode:
train(params, strategy)
if "eval" in FLAGS.mode:
timeout = 0 if FLAGS.mode == "train_and_eval" else 3000
# Uses padded decoding for TPU. Always uses cache.
padded_decode = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
params.override({
"padded_decode": padded_decode,
}, is_strict=False)
stats = evaluation.continuous_eval(
strategy,
params,
model_type=FLAGS.model_type,
eval_file_pattern=FLAGS.eval_file_pattern,
batch_size=FLAGS.eval_batch_size,
eval_steps=FLAGS.eval_steps,
model_dir=FLAGS.model_dir,
timeout=timeout)
return stats
def main(_):
stats = run()
if stats:
logging.info("Stats:\n%s", stats)
if __name__ == "__main__":
define_flags()
app.run(main)