From 5d691cb698c9546111e0f32dcf544bd7f517d241 Mon Sep 17 00:00:00 2001 From: lievan Date: Mon, 22 Jul 2024 12:45:09 -0400 Subject: [PATCH] update link --- ddtrace/llmobs/_llmobs.py | 14 +++++++------- ddtrace/llmobs/_trace_processor.py | 26 ++++++++------------------ 2 files changed, 15 insertions(+), 25 deletions(-) diff --git a/ddtrace/llmobs/_llmobs.py b/ddtrace/llmobs/_llmobs.py index 012c2df4833..abab0b8a087 100644 --- a/ddtrace/llmobs/_llmobs.py +++ b/ddtrace/llmobs/_llmobs.py @@ -119,7 +119,7 @@ def enable( _tracer: Optional[ddtrace.Tracer] = None, ) -> None: """ - Enable LLM Observability tracing. + Enable LLMObs tracing. :param str ml_app: The name of your ml application. :param bool integrations_enabled: Set to `true` to enable LLM integrations. @@ -289,7 +289,7 @@ def llm( session_id: Optional[str] = None, ml_app: Optional[str] = None, ) -> Span: - print("[✧ LLM Observability] LLM ✨: {} running ...".format(name)) + print("[✧ LLMObs] LLM ✨: {} running ...".format(name), flush=True) """ Trace an invocation call to an LLM where inputs and outputs are represented as text. @@ -327,7 +327,7 @@ def tool(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_a :returns: The Span object representing the traced operation. """ - print("[✧ LLM Observability] Tool 🔧: {} running ...".format(name)) + print("[✧ LLMObs] Tool 🔧: {} running ...".format(name), flush=True) if cls.enabled is False: log.warning(SPAN_START_WHILE_DISABLED_WARNING) return cls._instance._start_span("tool", name=name, session_id=session_id, ml_app=ml_app) @@ -344,14 +344,14 @@ def task(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_a :returns: The Span object representing the traced operation. """ - print("[✧ LLM Observability] Task 📌: {} running...".format(name)) + print("[✧ LLMObs] Task 📌: {} running...".format(name), flush=True) if cls.enabled is False: log.warning(SPAN_START_WHILE_DISABLED_WARNING) return cls._instance._start_span("task", name=name, session_id=session_id, ml_app=ml_app) @classmethod def agent(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None) -> Span: - print("[✧ LLM Observability] Agent 🤖: {} running ...".format(name)) + print("[✧ LLMObs] Agent 🤖: {} running ...".format(name), flush=True) """ Trace a dynamic workflow in which an embedded language model (agent) decides what sequence of actions to take. @@ -370,7 +370,7 @@ def agent(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_ def workflow( cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None ) -> Span: - print("[✧ LLM Observability] Workflow 🔗: {} running ...".format(name)) + print("[✧ LLMObs] Workflow 🔗: {} running ...".format(name), flush=True) """ Trace a predefined or static sequence of operations. @@ -428,7 +428,7 @@ def embedding( def retrieval( cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None ) -> Span: - print("[✧ LLM Observability] Retrieval 🔎: {} running ...".format(name)) + print("[✧ LLMObs] Retrieval 🔎: {} running ...".format(name), flush=True) """ Trace a vector search operation involving a list of documents being returned from an external knowledge base. diff --git a/ddtrace/llmobs/_trace_processor.py b/ddtrace/llmobs/_trace_processor.py index 5b3426938d4..d3e94caeab3 100644 --- a/ddtrace/llmobs/_trace_processor.py +++ b/ddtrace/llmobs/_trace_processor.py @@ -105,26 +105,16 @@ def _llmobs_span_event(self, span: Span) -> Dict[str, Any]: parent_id = str(_get_llmobs_parent_id(span) or "undefined") span._meta.pop(PARENT_ID_KEY, None) - name = _get_span_name(span) - if span_kind == "llm": - print("[✧ LLM Observability] LLM ✨: {} finished in {} seconds!".format(name, span.duration)) - elif span_kind == "workflow": - print("[✧ LLM Observability] Workflow 🔗: {} finished in {} seconds!".format(name, span.duration)) - elif span_kind == "agent": - print("[✧ LLM Observability] Agent 🤖: {} finished in {} seconds!".format(name, span.duration)) - url = """ - View your agent run: - https://app.datadoghq.com/llm/traces?query=%40event_type%3Aspan%20%40parent_id%3Aundefined%20%40trace_id%3A{}%20&agg_m=count&agg_m_source=base&agg_t=count&fromUser=false&llmPanels=%5B%7B%22t%22%3A%22sampleDetailPanel%22%2C%22rEID%22%3A%22AgAAAZDMT2fSc-LOggAAAAAAAAAYAAAAAEFaRE1UMS1vQUFBMl9fZXBadnc3QUFBQQAAACQAAAAAMDE5MGNjNGYtODc3MC00YmY0LTg5NGItZmFiNTY1NDk1ZjE0%22%7D%5D&sidepanelTab=trace&viz=stream + if parent_id == "undefined": + url = """[✧ LLMObs] Trace with root span name "{span_name}" finished in {span_duration} seconds 🎉! + + View your trace at: + https://dd.datad0g.com/llm/traces?query=%40ml_app%3Aai-chat """.format( - span.trace_id + span_name=span.name, + span_duration=span.duration, ) - print(url) - elif span_kind == "tool": - print("[✧ LLM Observability] Tool 🔧: {} finished in {} seconds!".format(name, span.duration)) - elif span_kind == "task": - print("[✧ LLM Observability] Task 📌: {} finished in {} seconds!".format(name, span.duration)) - elif span_kind == "retrieval": - print("[✧ LLM Observability] Retrieval 🔎: {} finished in {} seconds!".format(name, span.duration)) + print(url, flush=True) return { "trace_id": "{:x}".format(span.trace_id),