diff --git a/ddtrace/llmobs/_llmobs.py b/ddtrace/llmobs/_llmobs.py index 1367ae231c4..abab0b8a087 100644 --- a/ddtrace/llmobs/_llmobs.py +++ b/ddtrace/llmobs/_llmobs.py @@ -115,10 +115,11 @@ def enable( api_key: Optional[str] = None, env: Optional[str] = None, service: Optional[str] = None, + dev_mode: bool = True, _tracer: Optional[ddtrace.Tracer] = None, ) -> None: """ - Enable LLM Observability tracing. + Enable LLMObs tracing. :param str ml_app: The name of your ml application. :param bool integrations_enabled: Set to `true` to enable LLM integrations. @@ -288,6 +289,7 @@ def llm( session_id: Optional[str] = None, ml_app: Optional[str] = None, ) -> Span: + print("[✧ LLMObs] LLM ✨: {} running ...".format(name), flush=True) """ Trace an invocation call to an LLM where inputs and outputs are represented as text. @@ -325,6 +327,7 @@ def tool(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_a :returns: The Span object representing the traced operation. """ + print("[✧ LLMObs] Tool 🔧: {} running ...".format(name), flush=True) if cls.enabled is False: log.warning(SPAN_START_WHILE_DISABLED_WARNING) return cls._instance._start_span("tool", name=name, session_id=session_id, ml_app=ml_app) @@ -341,12 +344,14 @@ def task(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_a :returns: The Span object representing the traced operation. """ + print("[✧ LLMObs] Task 📌: {} running...".format(name), flush=True) if cls.enabled is False: log.warning(SPAN_START_WHILE_DISABLED_WARNING) return cls._instance._start_span("task", name=name, session_id=session_id, ml_app=ml_app) @classmethod def agent(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None) -> Span: + print("[✧ LLMObs] Agent 🤖: {} running ...".format(name), flush=True) """ Trace a dynamic workflow in which an embedded language model (agent) decides what sequence of actions to take. @@ -365,6 +370,7 @@ def agent(cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_ def workflow( cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None ) -> Span: + print("[✧ LLMObs] Workflow 🔗: {} running ...".format(name), flush=True) """ Trace a predefined or static sequence of operations. @@ -422,6 +428,7 @@ def embedding( def retrieval( cls, name: Optional[str] = None, session_id: Optional[str] = None, ml_app: Optional[str] = None ) -> Span: + print("[✧ LLMObs] Retrieval 🔎: {} running ...".format(name), flush=True) """ Trace a vector search operation involving a list of documents being returned from an external knowledge base. diff --git a/ddtrace/llmobs/_trace_processor.py b/ddtrace/llmobs/_trace_processor.py index 7c2e4608567..d3e94caeab3 100644 --- a/ddtrace/llmobs/_trace_processor.py +++ b/ddtrace/llmobs/_trace_processor.py @@ -68,6 +68,7 @@ def submit_llmobs_span(self, span: Span) -> None: def _llmobs_span_event(self, span: Span) -> Dict[str, Any]: """Span event object structure.""" span_kind = span._meta.pop(SPAN_KIND) + meta: Dict[str, Any] = {"span.kind": span_kind, "input": {}, "output": {}} if span_kind in ("llm", "embedding") and span.get_tag(MODEL_NAME) is not None: meta["model_name"] = span._meta.pop(MODEL_NAME) @@ -103,6 +104,18 @@ def _llmobs_span_event(self, span: Span) -> Dict[str, Any]: span.set_tag_str(SESSION_ID, session_id) parent_id = str(_get_llmobs_parent_id(span) or "undefined") span._meta.pop(PARENT_ID_KEY, None) + + if parent_id == "undefined": + url = """[✧ LLMObs] Trace with root span name "{span_name}" finished in {span_duration} seconds 🎉! + + View your trace at: + https://dd.datad0g.com/llm/traces?query=%40ml_app%3Aai-chat + """.format( + span_name=span.name, + span_duration=span.duration, + ) + print(url, flush=True) + return { "trace_id": "{:x}".format(span.trace_id), "span_id": str(span.span_id),