-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
executable file
·341 lines (286 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import time
import math
import torch
import torch.utils.data
try:
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
except:
autocast = None
scaler = None
from torch import nn
import torch.distributed as dist
import _torchvision as torchvision
import utils
from dataloader.classification import get_datasets, create_dataloader
from common_utils import LabelSmoothingCrossEntropy
def compute_loss(model, image, target, criterion):
output = model(image)
if not isinstance(output, (tuple, list)):
output = [output]
losses = []
for out in output:
losses.append(criterion(out, target))
loss = sum(losses)
return loss, output[0]
def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq, amp=False, use_dali=False):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('img/s', utils.SmoothedValue(window_size=10, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
all_fps = []
for data in metric_logger.log_every(data_loader, print_freq, header):
if use_dali:
image, target = data[0]["data"], data[0]["label"][:, 0].long()
else:
image, target = data
start_time = time.time()
image, target = image.to(device), target.to(device)
if autocast is None or not amp:
loss, output = compute_loss(model, image, target, criterion)
else:
with autocast():
loss, output = compute_loss(model, image, target, criterion)
optimizer.zero_grad()
if scaler is not None and amp:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
torch.cuda.synchronize()
end_time = time.time()
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
batch_size = image.shape[0]
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
fps = batch_size / (end_time - start_time) * utils.get_world_size()
metric_logger.meters['img/s'].update(fps)
all_fps.append(fps)
print(header, 'Avg img/s:', sum(all_fps) / len(all_fps))
def evaluate(model, criterion, data_loader, device, print_freq=100, use_dali=False):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
with torch.no_grad():
for data in metric_logger.log_every(data_loader, print_freq, header):
if use_dali:
image, target = data[0]["data"], data[0]["label"][:, 0].long()
else:
image, target = data
image = image.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(image)
loss = criterion(output, target)
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
# FIXME need to take into account that the datasets
# could have been padded in distributed setup
batch_size = image.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print(' * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5))
return metric_logger.acc1.global_avg
def _get_cache_path(filepath):
import hashlib
h = hashlib.sha1(filepath.encode()).hexdigest()
cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt")
cache_path = os.path.expanduser(cache_path)
return cache_path
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
utils.manual_seed(args.seed, deterministic=False)
# torch.backends.cudnn.benchmark = True
# WARN:
if dist.is_initialized():
num_gpu = dist.get_world_size()
else:
num_gpu = 1
global_batch_size = num_gpu * args.batch_size
train_dir = os.path.join(args.data_path, 'train')
val_dir = os.path.join(args.data_path, 'val')
num_classes = len(os.listdir(train_dir))
if 0 < num_classes < 13:
if global_batch_size > 512:
if utils.is_main_process():
print("WARN: Updating global batch size to 512, avoid non-convergence when training small dataset.")
args.batch_size = 512 // num_gpu
data_loader, data_loader_test = create_dataloader(train_dir, val_dir, args)
print(f"Creating model {args.model}")
model = torchvision.models.__dict__[args.model](pretrained=args.pretrained)
model.to(device)
if args.distributed and args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# criterion = nn.CrossEntropyLoss()
criterion = LabelSmoothingCrossEntropy()
opt_name = args.opt.lower()
if opt_name == 'sgd':
optimizer = torch.optim.SGD(
model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif opt_name == 'rmsprop':
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, eps=0.0316, alpha=0.9)
else:
raise RuntimeError("Invalid optimizer {}. Only SGD and RMSprop are supported.".format(args.opt))
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30, 60, 80 ,90], gamma=args.lr_gamma)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.test_only:
evaluate(model, criterion, data_loader_test, device=device)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed and not args.dali:
data_loader.sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq, args.amp, use_dali=args.dali)
lr_scheduler.step()
acc_avg = evaluate(model, criterion, data_loader_test, device=device, use_dali=args.dali)
if acc_avg > args.acc_thresh:
print("The accuracy has been exceeded {},and the training is terminated at epoch {}".format(args.acc_thresh, epoch))
return
if args.output_dir:
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))
epoch_total_time = time.time() - epoch_start_time
epoch_total_time_str = str(datetime.timedelta(seconds=int(epoch_total_time)))
print('epoch time {}'.format(epoch_total_time_str))
if args.dali:
data_loader.reset()
data_loader_test.reset()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Training', add_help=add_help)
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', help='dataset')
parser.add_argument('--model', default='resnet18', help='model')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=32, type=int)
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--opt', default='sgd', type=str, help='optimizer')
parser.add_argument('--lr',
# default=0.1,
default=0.128,
type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay',
# default=1e-4,
default=2e-4,
type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--acc-thresh',
default=75.0, type=float,
help='accuracy threshold')
parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument(
"--cache-dataset",
dest="cache_dataset",
help="Cache the datasets for quicker initialization. It also serializes the transforms",
action="store_true",
)
parser.add_argument(
"--sync-bn",
dest="sync_bn",
help="Use sync batch norm",
action="store_true",
)
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pre-trained models from the modelzoo",
action="store_true",
)
parser.add_argument('--auto-augment', default=None, help='auto augment policy (default: None)')
parser.add_argument('--random-erase', default=0.0, type=float, help='random erasing probability (default: 0.0)')
parser.add_argument(
"--dali",
help="Use dali as dataloader",
default=False,
action="store_true",
)
# distributed training parameters
parser.add_argument('--local_rank', '--local-rank', default=-1, type=int,
help='Local rank')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument('--amp', action='store_true', help='Automatic Mixed Precision training')
parser.add_argument('--seed', default=42, type=int, help='Random seed')
return parser
def get_master_addr():
if "MASTER_ADDR" in os.environ:
return os.environ["MASTER_ADDR"]
return "127.0.0.1"
def check_args(args):
master_addr = get_master_addr()
if master_addr != "127.0.0.1" and args.dist_url != "env://":
args.dist_url = 'tcp://' + os.environ["MASTER_ADDR"] + ':' + os.environ["MASTER_PORT"]
return args
if __name__ == "__main__":
args = get_args_parser().parse_args()
args = check_args(args)
try:
from dltest import show_training_arguments
show_training_arguments(args)
except:
pass
main(args)