A ResNeXt repeats a building block that aggregates a set of transformations with the same topology. Compared to a ResNet, it exposes a new dimension, cardinality (the size of the set of transformations) , as an essential factor in addition to the dimensions of depth and width.
pip3 install -r requirements.txt
Sign up and login in ImageNet official website, then choose 'Download' to download the whole ImageNet dataset. Specify /path/to/imagenet
to your ImageNet path in later training process.
The ImageNet dataset path structure should look like:
imagenet
├── train
│ └── n01440764
│ ├── n01440764_10026.JPEG
│ └── ...
├── train_list.txt
├── val
│ └── n01440764
│ ├── ILSVRC2012_val_00000293.JPEG
│ └── ...
└── val_list.txt
Set data path by export DATA_PATH=/path/to/imagenet
. The following command uses all cards to train:
bash train_resnext50_32x4d_amp_dist.sh