forked from gnebehay/CppMT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatcher.cpp
143 lines (107 loc) · 4.41 KB
/
Matcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include "Matcher.h"
using cv::vconcat;
using cv::DMatch;
namespace cmt {
void Matcher::initialize(const vector<Point2f> & pts_fg_norm, const Mat desc_fg, const vector<int> & classes_fg,
const Mat desc_bg, const Point2f center)
{
FILE_LOG(logDEBUG) << "Matcher::initialize() call";
//Copy normalized points
this->pts_fg_norm = pts_fg_norm;
//Remember number of background points
this->num_bg_points = desc_bg.rows;
//Form database by stacking background and foreground features
if (desc_bg.rows > 0 && desc_fg.rows > 0)
vconcat(desc_bg, desc_fg, database);
else if (desc_bg.rows > 0)
database = desc_bg;
else
database = desc_fg;
//Extract descriptor length from features
desc_length = database.cols*8;
//Create background classes (-1)
vector<int> classes_bg = vector<int>(desc_bg.rows,-1);
//Concatenate fg and bg classes
classes = classes_bg;
classes.insert(classes.end(), classes_fg.begin(), classes_fg.end());
//Create descriptor matcher
bfmatcher = DescriptorMatcher::create("BruteForce-Hamming");
FILE_LOG(logDEBUG) << "Matcher::initialize() return";
}
void Matcher::matchGlobal(const vector<KeyPoint> & keypoints, const Mat descriptors,
vector<Point2f> & points_matched, vector<int> & classes_matched)
{
FILE_LOG(logDEBUG) << "Matcher::matchGlobal() call";
if (keypoints.size() == 0)
{
FILE_LOG(logDEBUG) << "Matcher::matchGlobal() return";
return;
}
vector<vector<DMatch> > matches;
bfmatcher->knnMatch(descriptors, database, matches, 2);
for (size_t i = 0; i < matches.size(); i++)
{
vector<DMatch> m = matches[i];
float distance1 = m[0].distance / desc_length;
float distance2 = m[1].distance / desc_length;
int matched_class = classes[m[0].trainIdx];
if (matched_class == -1) continue;
if (distance1 > thr_dist) continue;
if (distance1/distance2 > thr_ratio) continue;
points_matched.push_back(keypoints[i].pt);
classes_matched.push_back(matched_class);
}
FILE_LOG(logDEBUG) << "Matcher::matchGlobal() return";
}
void Matcher::matchLocal(const vector<KeyPoint> & keypoints, const Mat descriptors,
const Point2f center, const float scale, const float rotation,
vector<Point2f> & points_matched, vector<int> & classes_matched)
{
FILE_LOG(logDEBUG) << "Matcher::matchLocal() call";
if (keypoints.size() == 0) {
FILE_LOG(logDEBUG) << "Matcher::matchLocal() return";
return;
}
//Transform initial points
vector<Point2f> pts_fg_trans;
pts_fg_trans.reserve(pts_fg_norm.size());
for (size_t i = 0; i < pts_fg_norm.size(); i++)
{
pts_fg_trans.push_back(scale * rotate(pts_fg_norm[i], -rotation));
}
//Perform local matching
for (size_t i = 0; i < keypoints.size(); i++)
{
//Normalize keypoint with respect to center
Point2f location_rel = keypoints[i].pt - center;
//Find potential indices for matching
vector<int> indices_potential;
for (size_t j = 0; j < pts_fg_trans.size(); j++)
{
float l2norm = norm(pts_fg_trans[j] - location_rel);
if (l2norm < thr_cutoff) {
indices_potential.push_back(num_bg_points + j);
}
}
//If there are no potential matches, continue
if (indices_potential.size() == 0) continue;
//Build descriptor matrix and classes from potential indices
Mat database_potential = Mat(indices_potential.size(), database.cols, database.type());
for (size_t j = 0; j < indices_potential.size(); j++) {
database.row(indices_potential[j]).copyTo(database_potential.row(j));
}
//Find distances between descriptors
vector<vector<DMatch> > matches;
bfmatcher->knnMatch(descriptors.row(i), database_potential, matches, 2);
vector<DMatch> m = matches[0];
float distance1 = m[0].distance / desc_length;
float distance2 = m.size() > 1 ? m[1].distance / desc_length : 1;
if (distance1 > thr_dist) continue;
if (distance1/distance2 > thr_ratio) continue;
int matched_class = classes[indices_potential[m[0].trainIdx]];
points_matched.push_back(keypoints[i].pt);
classes_matched.push_back(matched_class);
}
FILE_LOG(logDEBUG) << "Matcher::matchLocal() return";
}
} /* namespace CMT */