-
Notifications
You must be signed in to change notification settings - Fork 210
/
Copy pathhgemm_cublas.cu
261 lines (220 loc) · 6.9 KB
/
hgemm_cublas.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <mma.h>
#include "cublas_v2.h"
static cublasHandle_t g_handle = nullptr;
void init_cublas_handle() {
if (g_handle == nullptr) {
cublasStatus_t status = cublasCreate(&g_handle);
if (status != CUBLAS_STATUS_SUCCESS) {
printf("Failed to create cuBLAS handle: %d", status);
exit(EXIT_FAILURE);
}
status = cublasSetMathMode(g_handle, CUBLAS_TENSOR_OP_MATH);
if (status != CUBLAS_STATUS_SUCCESS) {
printf("Failed to set cuBLAS Math Mode: %d", status);
exit(EXIT_FAILURE);
}
}
}
void destroy_cublas_handle() {
if (g_handle != nullptr) {
cublasStatus_t status = cublasDestroy(g_handle);
if (status != CUBLAS_STATUS_SUCCESS) {
printf("Failed to destroy cuBLAS handle: %d", status);
}
g_handle = nullptr;
}
}
// NN: A/B/C All row major
void cublas_tensor_op_nn(half *A, half *B, half *C, size_t M, size_t N, size_t K) {
static half alpha = 1.0;
static half beta = 0.0;
if (g_handle == nullptr) {
init_cublas_handle();
}
cublasGemmEx(g_handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
N, M, K,
&alpha,
B, CUDA_R_16F, N,
A, CUDA_R_16F, K,
&beta,
C, CUDA_R_16F, N,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
// TN: A row major MxK, B col major NxK, C row major MxN
void cublas_tensor_op_tn(half *A, half *B, half *C, size_t M, size_t N, size_t K) {
static half alpha = 1.0;
static half beta = 0.0;
if (g_handle == nullptr) {
init_cublas_handle();
}
cublasGemmEx(g_handle,
CUBLAS_OP_T,
CUBLAS_OP_N,
N, M, K,
&alpha,
B, CUDA_R_16F, K,
A, CUDA_R_16F, K,
&beta,
C, CUDA_R_16F, N,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
// build cpp binary
#ifndef NO_CUBLAS_HGEMM_BIN
// pass the cuBLAS handle from outside to avoid error.
void cublas_tensor_op_tn_v2(cublasHandle_t handle,
half *A, half *B, half *C,
size_t M, size_t N, size_t K) {
half alpha = 1.0;
half beta = 0.0;
cublasGemmEx(handle,
CUBLAS_OP_T,
CUBLAS_OP_N,
N, M, K,
&alpha,
B, CUDA_R_16F, K,
A, CUDA_R_16F, K,
&beta,
C, CUDA_R_16F, N,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
float perf_cublas_tn(int M, int N, int K, int repeat) {
size_t size_a = M * K * sizeof(half);
size_t size_b = K * N * sizeof(half);
size_t size_c = M * N * sizeof(half);
half *d_a, *d_b;
half *d_c;
cudaMalloc(&d_a, size_a);
cudaMalloc(&d_b, size_b);
cudaMalloc(&d_c, size_c);
cublasHandle_t handle = nullptr;
cublasCreate(&handle);
cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH);
// warmup
for (int i = 0; i < 10; ++i) {
cublas_tensor_op_tn_v2(handle, d_a, d_b, d_c, M, N, K);
}
cudaDeviceSynchronize();
cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);
cudaEventRecord(start);
for (int i = 0; i < repeat; i++) {
cublas_tensor_op_tn_v2(handle, d_a, d_b, d_c, M, N, K);
}
cudaEventRecord(end);
cudaDeviceSynchronize();
cudaEventSynchronize(end);
float msec, sec;
cudaEventElapsedTime(&msec, start, end);
sec = msec / 1000.0 / repeat;
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
cudaEventDestroy(start);
cudaEventDestroy(end);
cublasDestroy(handle);
return sec;
}
int main(int argc, char *argv[]) {
const int test_num = 64;
int M_list[test_num];
int N_list[test_num];
int K_list[test_num];
for (int i = 0; i < test_num; i++) {
M_list[i] = (i + 1) * 256;
N_list[i] = (i + 1) * 256;
K_list[i] = (i + 1) * 256;
}
const int outer_repeat = 10, inner_repeat = 1;
printf("ALGO = cuBLAS CUBLAS_GEMM_DEFAULT_TENSOR_OP TN\n");
for (int j = 0; j < test_num; j++) {
int M = M_list[j], N = N_list[j], K = K_list[j];
double max_sec = 0.0;
double min_sec = DBL_MAX;
double total_sec = 0.0;
for (int k = 0; k < outer_repeat; k++) {
double this_sec = perf_cublas_tn(M, N, K, inner_repeat);
max_sec = max(max_sec, this_sec);
min_sec = min(min_sec, this_sec);
total_sec += this_sec;
}
// 1 TFLOPS = 10^12 FLOPS
// ref: https://imgtec.eetrend.com/blog/2021/100062210.html.
double avg_sec = total_sec / outer_repeat;
double avg_Tflops = ((double)M) * N * K * 2 * 1e-12 / avg_sec;
printf("M N K = %6d %6d %6d, ", M, N, K);
printf("Time = %12.8lf %12.8lf %12.8lf s, ", min_sec, avg_sec, max_sec);
printf("AVG Performance = %10.4lf Tflops\n", avg_Tflops);
}
return 0;
}
// build torch python binding
#else
// --------------------- PyTorch bindings for custom kernel -----------------------
#include <torch/types.h>
#include <torch/extension.h>
#define STRINGFY(str) #str
#define TORCH_BINDING_COMMON_EXTENSION(func) \
m.def(STRINGFY(func), &func, STRINGFY(func));
#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \
if(((T).options().dtype() != (th_type))) { \
std::cout << "Tensor Info:" << (T).options() << std::endl; \
throw std::runtime_error("values must be "#th_type); \
}
#define CHECK_TORCH_TENSOR_SHAPE(T, S0, S1) \
if (((T).size(0) != (S0)) || ((T).size(1) != (S1))) { \
throw std::runtime_error("Tensor size mismatch!"); \
}
// NN: A/B/C All row major
void hgemm_cublas_tensor_op_nn(
torch::Tensor a, torch::Tensor b, torch::Tensor c) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(b, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(c, torch::kHalf)
const int M = a.size(0);
const int K = a.size(1);
const int N = b.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(b, K, N)
CHECK_TORCH_TENSOR_SHAPE(c, M, N)
cublas_tensor_op_nn(
reinterpret_cast<half*>(a.data_ptr()),
reinterpret_cast<half*>(b.data_ptr()),
reinterpret_cast<half*>(c.data_ptr()),
M, N, K
);
}
// TN: A row major MxK, B col major KxN, C row major MxN
void hgemm_cublas_tensor_op_tn(
torch::Tensor a, torch::Tensor b, torch::Tensor c) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(b, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(c, torch::kHalf)
const int M = a.size(0);
const int K = a.size(1);
const int N = b.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(b, K, N)
CHECK_TORCH_TENSOR_SHAPE(c, M, N)
cublas_tensor_op_tn(
reinterpret_cast<half*>(a.data_ptr()),
reinterpret_cast<half*>(b.data_ptr()),
reinterpret_cast<half*>(c.data_ptr()),
M, N, K
);
}
#endif