-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patharchitectures.py
276 lines (251 loc) · 9.89 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.nn as nn
import torch.nn.functional as F
from reinforce_utils import *
from utils import compute_similarity_images
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
# print(m)
m.weight.data.uniform_(-0.08,0.08)
if not m.bias is None:
m.bias.data.uniform_(-0.08,0.08)
if type(m) == Baseline:
for param in m.parameters():
# print("init Baseline")
param.data.uniform_(-0.08,0.08)
class Players(nn.Module):
def __init__(self, sender, receiver, baseline):
super(Players, self).__init__()
self.sender = sender
self.receiver = receiver
self.baseline = baseline
def forward(self, images_vectors, images_vectors_receiver,
opt,fix_s=False):
one_hot_signal, sender_probs, s_emb = sender_action(self.sender,
images_vectors, opt)
if fix_s:
one_hot_signal.detach()
sender_probs.detach()
one_hot_output, receiver_probs, r_emb = receiver_action(self.receiver,
images_vectors_receiver, one_hot_signal, opt)
return one_hot_signal,sender_probs,one_hot_output,receiver_probs,\
s_emb,r_emb
class InformedSender(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1., eps=1e-8):
super(InformedSender, self).__init__()
self.eps = eps
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
#TODO: here we have embedding_size biases, that will then be in the
#kernel convolution
self.lin1 = nn.Linear(feat_size,embedding_size, bias=False)
#TODO: here we have hidden_size biases, that will then be in the
#kernel convolution
self.conv2 = nn.Conv2d(1,hidden_size,
kernel_size=(game_size,1),
stride=(game_size,1), bias=False)
#TODO: here we have 1 bias
self.conv3 = nn.Conv2d(1,1,
kernel_size=(hidden_size,1),
stride=(hidden_size,1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
print("init sender")
self.apply(init_weights)
def forward(self, x, return_embeddings=False):
# embed each image (left or right)
emb = self.return_embeddings(x)
# in: h of size (batch_size, 1, game_size, embedding_size)
# out: h of size (batch_size, hidden_size, 1, embedding_size)
h = self.conv2(emb)
h = F.sigmoid(h)
# in: h of size (batch_size, hidden_size, 1, embedding_size)
# out: h of size (batch_size, 1, hidden_size, embedding_size)
h = h.transpose(1,2)
h = self.conv3(h)
# h of size (batch_size, 1, 1, embedding_size)
h = F.sigmoid(h)
h = h.squeeze(dim=1)
h = h.squeeze(dim=1)
# h of size (batch_size, embedding_size)
h = self.lin4(h)
h = h.mul(1./self.temp)
# h of size (batch_size, vocab_size)
h = F.softmax(h, dim=1)
return h, emb
def return_embeddings(self, x, low=None):
# embed each image (left or right)
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size())== 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
#h_i are batch_size x embedding_size
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
#h_i are now batch_size x 1 x 1 x embedding_size
embs.append(h_i)
# concatenate the embeddings
h = torch.cat(embs,dim=2)
return h
def return_similarities(self, embs):
batch_size = embs.size(0)
sims = torch.zeros(batch_size).double()
space = embs.squeeze(1)
normalized=space/(torch.norm(space,p=2,dim=2,keepdim=True))
pairwise_cosines_matrix=torch.bmm(normalized,normalized.transpose(1,2))
sims = pairwise_cosines_matrix[:,0,1]
return sims
class Receiver(nn.Module):
def __init__(self, game_size, feat_size, embedding_size,
vocab_size=100,eps=1e-8):
#TODO: property size?
super(Receiver, self).__init__()
self.eps = eps
self.game_size = game_size
self.embedding_size = embedding_size
self.lin1 = nn.Linear(feat_size,embedding_size, bias=False)
self.lin2 = nn.Linear(vocab_size,embedding_size, bias=False)
print("init receiver")
self.apply(init_weights)
def forward(self, x, signal):
# embed each image (left or right)
emb = self.return_embeddings(x)
# embed the signal
if len(signal.size())== 3:
signal = signal.squeeze(dim=-1)
h_s = self.lin2(signal)
# h_s is of size batch_size x embedding_size
h_s = h_s.unsqueeze(dim=1)
# h_s is of size batch_size x 1 x embedding_size
h_s = h_s.transpose(1,2)
# h_s is of size batch_size x embedding_size x 1
out = torch.bmm(emb,h_s)
# out is of size batch_size x game_size x 1
out = out.squeeze(dim=-1)
# out is of size batch_size x game_size
probas = F.softmax(out, dim=1)
return probas, emb
def return_embeddings(self, x, low=None):
# embed each image (left or right)
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size())== 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
#h_i are batch_size x embedding_size
h_i = h_i.unsqueeze(dim=1)
#h_i are now batch_size x 1 x embedding_size
embs.append(h_i)
h = torch.cat(embs,dim=1)
return h
def return_similarities(self, embs):
batch_size = embs.size(0)
sims = torch.zeros(batch_size).double()
space = embs
normalized=space/(torch.norm(space,p=2,dim=2,keepdim=True))
pairwise_cosines_matrix=torch.bmm(normalized,normalized.transpose(1,2))
sims = pairwise_cosines_matrix[:,0,1]
return sims
class InformedReceiver(nn.Module):
def __init__(self, game_size, feat_size, embedding_size,hidden_size,
vocab_size=100, temp=1.,eps=1e-8):
#TODO: property size?
super(InformedReceiver, self).__init__()
self.eps = eps
self.game_size = game_size
self.embedding_size = embedding_size
self.lin1 = nn.Linear(feat_size,embedding_size, bias=False)
self.lin2 = nn.Linear(vocab_size,embedding_size, bias=False)
self.lin3 = nn.Linear(embedding_size*game_size+embedding_size,hidden_size, bias=False)
self.lin4 = nn.Linear(hidden_size,game_size, bias=False)
# self.conv3 = nn.Conv2d(1,hidden_size,
# kernel_size=((game_size+1),1),
# stride=((game_size+1),1), bias=False)
# self.conv4 = nn.Conv2d(1,1,
# kernel_size=(hidden_size,1),
# stride=(hidden_size,1), bias=False)
# self.lin5 = nn.Linear(embedding_size,game_size, bias=False)
print("init receiver")
self.apply(init_weights)
self.temp = temp
def forward(self, x, signal):
# embed each image (left or right)
emb = self.return_embeddings(x)
# emb is of size batch_size x game_size x embedding_size
# embed the signal
if len(signal.size())== 3:
signal = signal.squeeze(dim=-1)
h_s = self.lin2(signal)
# h_s is of size batch_size x embedding_size
# now do embed the 3 together
embs_im_symb = []
# images embeddings
for i in range(self.game_size):
embs_im_symb.append(emb[:,i,:])
# symbol embedding
embs_im_symb.append(h_s)
# OPTION 1
h = torch.cat(embs_im_symb,dim=1)
#h is of size batch_size x (embedding_size x (game_size + 1))
h =self.lin3(h)
h = F.sigmoid(h)
out=self.lin4(h)
# OPTION 2
# embs_im_symb2 = []
# # images embeddings
# for i in range(self.game_size+1):
# em = embs_im_symb[i].unsqueeze(1).unsqueeze(1)
# embs_im_symb2.append(em)
# h = torch.cat(embs_im_symb2,dim=2)
# #in: h is of size batch_sizex1x(game_size + 1)xembedding_size
# #out: h is of size batch_sizex1xhidden_sizex1
# h = self.conv3(h)
# h = F.sigmoid(h)
# # in: h of size (batch_size, hidden_size, 1, embedding_size)
# # out: h of size (batch_size, 1, hidden_size, embedding_size)
# h = h.transpose(1,2)
# h = self.conv4(h)
# h = F.sigmoid(h)
# # h of size (batch_size, 1, 1, embedding_size)
# h = h.squeeze(dim=1)
# h = h.squeeze(dim=1)
# out=self.lin5(h)
out = out.mul(1./self.temp)
# out is of size batch_size x game_size
probas = F.softmax(out, dim=1)
return probas, emb
def return_embeddings(self, x, low=None):
# embed each image (left or right)
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size())== 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
#h_i are batch_size x embedding_size
h_i = h_i.unsqueeze(dim=1)
#h_i are now batch_size x 1 x embedding_size
embs.append(h_i)
h = torch.cat(embs,dim=1)
return h
class Baseline(nn.Module):
def __init__(self, add_one=0):
super(Baseline, self).__init__()
self.bias = nn.Parameter(torch.ones(1))
self.add_one = add_one
print("init baseline")
self.apply(init_weights)
def forward(self, bs):
if self.add_one:
# print("Adding one")
batch_bias = (self.bias + 1.).expand(bs,1)
else:
# print("Not adding one")
batch_bias = (self.bias).expand(bs,1)
return batch_bias