-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
256 lines (225 loc) · 13.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, utils
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from torch.autograd import Variable
from logger import Logger
import pdb
import os
import re
import numpy as np
import time
# Training settings
parser = argparse.ArgumentParser(description='PyTorch depth map prediction example')
parser.add_argument('model_folder', type=str, default='trial', metavar='F',
help='In which folder do you want to save the model')
parser.add_argument('--data', type=str, default='data', metavar='D',
help="folder where data is located. train_data.zip and test_data.zip need to be found in the folder")
parser.add_argument('--batch-size', type = int, default = 32, metavar = 'N',
help='input batch size for training (default: 8)')
parser.add_argument('--epochs', type=int, default = 10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--suffix', type=str, default='', metavar='D',
help='suffix for the filename of models and output files')
args = parser.parse_args()
from data import NYUDataset, rgb_data_transforms, depth_data_transforms, input_for_plot_transforms, output_height, output_width
train_loader = torch.utils.data.DataLoader(NYUDataset( 'nyu_depth_v2_labeled.mat',
'training',
rgb_transform = rgb_data_transforms,
depth_transform = depth_data_transforms),
batch_size = args.batch_size,
shuffle = True, num_workers = 5)
val_loader = torch.utils.data.DataLoader(NYUDataset( 'nyu_depth_v2_labeled.mat',
'validation',
rgb_transform = rgb_data_transforms,
depth_transform = depth_data_transforms),
batch_size = args.batch_size,
shuffle = False, num_workers = 5)
from tiny_unet import UNet
model = UNet()
model.cuda()
def custom_loss_function(output, target):
di = target - output
n = (output_height * output_width)
di2 = torch.pow(di, 2)
fisrt_term = torch.sum(di2,(1,2,3))/n
second_term = 0.5*torch.pow(torch.sum(di,(1,2,3)), 2)/ (n**2)
loss = fisrt_term - second_term
return loss.mean()
# loss_function = custom_loss_function
# optimizer = optim.Adam(model.parameters(), amsgrad=True, lr=0.001)
# Paper values for SGD
# coarse_optimizer = optim.SGD([{'params': coarse_model.conv1.parameters(), 'lr': 0.001},{'params': coarse_model.conv2.parameters(), 'lr': 0.001},{'params': coarse_model.conv3.parameters(), 'lr': 0.001},{'params': coarse_model.conv4.parameters(), 'lr': 0.001},{'params': coarse_model.conv5.parameters(), 'lr': 0.001},{'params': coarse_model.fc1.parameters(), 'lr': 0.1},{'params': coarse_model.fc2.parameters(), 'lr': 0.1}], lr = 0.001, momentum = 0.9)
# fine_optimizer = optim.SGD([{'params': fine_model.conv1.parameters(), 'lr': 0.001},{'params': fine_model.conv2.parameters(), 'lr': 0.01},{'params': fine_model.conv3.parameters(), 'lr': 0.001}], lr = 0.001, momentum = 0.9)
# Changed values
# coarse_optimizer = optim.SGD([{'params': coarse_model.conv1.parameters(), 'lr': 0.01},{'params': coarse_model.conv2.parameters(), 'lr': 0.01},{'params': coarse_model.conv3.parameters(), 'lr': 0.01},{'params': coarse_model.conv4.parameters(), 'lr': 0.01},{'params': coarse_model.conv5.parameters(), 'lr': 0.01},{'params': coarse_model.fc1.parameters(), 'lr': 0.1},{'params': coarse_model.fc2.parameters(), 'lr': 0.1}], lr = 0.01, momentum = 0.9)
# fine_optimizer = optim.SGD(fine_model.parameters(), lr=args.lr, momentum=args.momentum)
# fine modified but default fine work more.
#fine_optimizer = optim.SGD([{'params': coarse_model.conv1.parameters(), 'lr': 0.01},{'params': coarse_model.conv2.parameters(), 'lr': 0.1},{'params': coarse_model.conv3.parameters(), 'lr': 0.01}], lr = 0.01, momentum = 0.9)
# default SGD optimiser - don't work
optimizer = optim.SGD(model.parameters(), lr = 0.1, momentum=0.9)
# fine_optimizer = optim.SGD(fine_model.parameters(), lr=args.lr, momentum=args.momentum)
# coarse_optimizer = optim.Adadelta(coarse_model.parameters(), lr=1.0, rho=0.9, eps=1e-06, weight_decay=0)
# fine_optimizer = optim.Adadelta(fine_model.parameters(), lr=1.0, rho=0.9, eps=1e-06, weight_decay=0)
# coarse_optimizer = optim.Adagrad(coarse_model.parameters(), lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)
# fine_optimizer = optim.Adagrad(fine_model.parameters(), lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)
# coarse_optimizer = optim.Adam(coarse_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
# fine_optimizer = optim.Adam(fine_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
# coarse_optimizer = optim.Adamax(coarse_model.parameters(), lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
# fine_optimizer = optim.Adamax(fine_model.parameters(), lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
# coarse_optimizer = optim.ASGD(coarse_model.parameters(), lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)
# fine_optimizer = optim.ASGD(fine_model.parameters(), lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)
dtype=torch.cuda.FloatTensor
si_logger = Logger('./logs/' + args.model_folder + '/scale_invariant_validation_loss')
t1_logger = Logger('./logs/' + args.model_folder + '/threshold_lt_1.25')
t2_logger = Logger('./logs/' + args.model_folder + '/threshold_lt_1.25sq')
t3_logger = Logger('./logs/' + args.model_folder + '/threshold_lt_1.25cb')
rmse_logger = Logger('./logs/' + args.model_folder + '/rmse_linear')
rmse_log_logger = Logger('./logs/' + args.model_folder + '/rmse_log')
abs_rel_diff_logger = Logger('./logs/' + args.model_folder + '/abs_rel_diff')
abs_rel_diff_sq_logger = Logger('./logs/' + args.model_folder + '/abs_rel_diff_sq')
def plot_n_save_fig(epoch, plot_input, output, actual_output):
F = plt.figure(1, (30, 60))
F.subplots_adjust(left=0.05, right=0.95)
plot_grid(F, plot_input, output, actual_output, 1)
plt.savefig("plots/" + args.model_folder + "_" + str(epoch) + ".jpg")
plt.show()
def plot_grid(fig, plot_input, output, actual_output, row_no):
grid = ImageGrid(fig, 141, nrows_ncols=(row_no, 4), axes_pad=0.05, label_mode="1")
for i in range(row_no):
for j in range(3):
if(j == 0):
grid[i*4+j].imshow(np.transpose(plot_input[i], (1, 2, 0)), interpolation="nearest")
if(j == 1):
grid[i*4+j].imshow(np.transpose(output[i][0].detach().cpu().numpy(), (0, 1)), interpolation="nearest")
if(j == 2):
grid[i*4+j].imshow(np.transpose(actual_output[i][0].detach().cpu().numpy(), (0, 1)), interpolation="nearest")
# All Error Function
def threeshold_percentage(output, target, threeshold_val):
d1 = torch.exp(output)/torch.exp(target)
d2 = torch.exp(target)/torch.exp(output)
max_d1_d2 = torch.max(d1,d2)
zero = torch.zeros(output.shape[0], output.shape[1], output.shape[2], output.shape[3])
one = torch.ones(output.shape[0], output.shape[1], output.shape[2], output.shape[3])
bit_mat = torch.where(max_d1_d2.cpu() < threeshold_val, one, zero)
count_mat = torch.sum(bit_mat, (1,2,3))
threeshold_mat = count_mat/(output.shape[2] * output.shape[3])
return threeshold_mat.mean()
def rmse_linear(output, target):
actual_output = torch.exp(output)
actual_target = torch.exp(target)
diff = actual_output - actual_target
diff2 = torch.pow(diff, 2)
mse = torch.sum(diff2, (1,2,3))/(output.shape[2] * output.shape[3])
rmse = torch.sqrt(mse)
return rmse.mean()
def rmse_log(output, target):
diff = output - target
diff2 = torch.pow(diff, 2)
mse = torch.sum(diff2, (1,2,3))/(output.shape[2] * output.shape[3])
rmse = torch.sqrt(mse)
return mse.mean()
def abs_relative_difference(output, target):
actual_output = torch.exp(output)
actual_target = torch.exp(target)
abs_relative_diff = torch.abs(actual_output - actual_target)/actual_target
abs_relative_diff = torch.sum(abs_relative_diff, (1,2,3))/(output.shape[2] * output.shape[3])
return abs_relative_diff.mean()
def squared_relative_difference(output, target):
actual_output = torch.exp(output)
actual_target = torch.exp(target)
square_relative_diff = torch.pow(torch.abs(actual_output - actual_target), 2)/actual_target
square_relative_diff = torch.sum(square_relative_diff, (1,2,3))/(output.shape[2] * output.shape[3])
return square_relative_diff.mean()
#############################################
def train_Unet(epoch):
model.train()
train_coarse_loss = 0
for batch_idx, image in enumerate(train_loader):
# start = time.time()
# pdb.set_trace()
x = image['image'].cuda()
y = image['depth'].cuda()
optimizer.zero_grad()
y_hat = model(x.type(dtype))
loss = custom_loss_function(y_hat, y)
loss.backward()
optimizer.step()
train_coarse_loss += loss.item()
if epoch % args.log_interval==0:
training_tag = "training loss epoch:" + str(epoch)
#logger.scalar_summary(training_tag, loss.item(), batch_idx)
train_coarse_loss /= (batch_idx + 1)
return train_coarse_loss
print("Epochs: Train_loss Val_loss Delta_1 Delta_2 Delta_3 rmse_lin rmse_log abs_rel. square_relative")
print("Paper Val: (0.618) (0.891) (0.969) (0.871) (0.283) (0.228) (0.223)")
def validate_Unet(epoch, training_loss):
model.eval()
validation_loss = 0
delta1_accuracy = 0
delta2_accuracy = 0
delta3_accuracy = 0
rmse_linear_loss = 0
rmse_log_loss = 0
abs_relative_difference_loss = 0
squared_relative_difference_loss = 0
with torch.no_grad():
for idx, image in enumerate(val_loader):
# pdb.set_trace()
x = image['image'].cuda()
y = image['depth'].cuda()
y_hat = model(x.type(dtype))
loss = custom_loss_function(y_hat, y)
validation_loss += loss
# all error functions
delta1_accuracy += threeshold_percentage(y_hat, y, 1.25)
delta2_accuracy += threeshold_percentage(y_hat, y, 1.25*1.25)
delta3_accuracy += threeshold_percentage(y_hat, y, 1.25*1.25*1.25)
rmse_linear_loss += rmse_linear(y_hat, y)
rmse_log_loss += rmse_log(y_hat, y)
abs_relative_difference_loss += abs_relative_difference(y_hat, y)
squared_relative_difference_loss += squared_relative_difference(y_hat, y)
validation_loss /= (idx + 1)
delta1_accuracy /= (idx + 1)
delta2_accuracy /= (idx + 1)
delta3_accuracy /= (idx + 1)
rmse_linear_loss /= (idx + 1)
rmse_log_loss /= (idx + 1)
abs_relative_difference_loss /= (idx + 1)
squared_relative_difference_loss /= (idx + 1)
print('Epoch: {} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.
format(epoch, training_loss, validation_loss, delta1_accuracy, delta2_accuracy, delta3_accuracy, rmse_linear_loss, rmse_log_loss,
abs_relative_difference_loss, squared_relative_difference_loss))
si_logger.scalar_summary("validation loss", validation_loss, epoch)
t1_logger.scalar_summary("validation loss", delta1_accuracy, epoch)
t2_logger.scalar_summary("validation loss", delta2_accuracy, epoch)
t3_logger.scalar_summary("validation loss", delta3_accuracy, epoch)
rmse_logger.scalar_summary("validation loss", rmse_linear_loss, epoch)
rmse_log_logger.scalar_summary("validation loss", rmse_log_loss, epoch)
abs_rel_diff_logger.scalar_summary("validation loss", abs_relative_difference_loss, epoch)
abs_rel_diff_sq_logger.scalar_summary("validation loss", squared_relative_difference_loss, epoch)
folder_name = "models/" + args.model_folder
if not os.path.exists(folder_name): os.mkdir(folder_name)
print("********* Training the Unet Model **************")
for epoch in range(1, args.epochs + 1):
training_loss = train_Unet(epoch)
if epoch % 1 == 0:
validate_Unet(epoch, training_loss)
if epoch % 1 == 0:
model_file = folder_name + "/model_" + str(epoch) + ".pth"
torch.save(model.state_dict(), model_file)