-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_decoder.py
375 lines (331 loc) · 19.5 KB
/
train_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import gc
import math
import json
import torch
import random
import shutil
import argparse
from tqdm import tqdm
from utils import loader_utils, train_utils, latent_utils
from accelerate import Accelerator
from torch.utils.data import DataLoader
from diffusers.training_utils import EMAModel
print_filler = "--------------------------------------------------"
def get_bucket_list(batch_size, dataset_paths, image_ext):
print("Creating bucket list")
bucket_list = {}
for latent_dataset, image_dataset, repeat in dataset_paths:
with open(os.path.join(latent_dataset, "bucket_list.json"), "r") as f:
bucket = json.load(f)
for key in bucket.keys():
if key not in bucket_list.keys():
bucket_list[key] = []
for i in range(len(bucket[key])):
for _ in range(repeat):
latent_path = os.path.join(latent_dataset, bucket[key][i])
image_path = os.path.join(image_dataset, bucket[key][i][:-9]+"image"+image_ext)
if os.path.exists(latent_path) and os.path.exists(image_path):
bucket_list[key].append([latent_path, image_path])
else:
print(f"File not found: {bucket[key][i]}")
keys_to_remove = []
total_image_count = 0
for key in bucket_list.keys():
if len(bucket_list[key]) < batch_size:
keys_to_remove.append(key)
else:
random.shuffle(bucket_list[key])
total_image_count = total_image_count + len(bucket_list[key])
removed_image_count = 0
for key in keys_to_remove:
count = len(bucket_list[key])
print(f"Removing bucket {key} with {count} images")
bucket_list.pop(key)
removed_image_count = removed_image_count + count
print(print_filler)
print(f"Removed {removed_image_count} images in total")
print(f"Images left in the dataset: {total_image_count}")
print(print_filler + "\n")
return bucket_list
def get_batches(batch_size, dataset_paths, dataset_index, image_ext):
bucket_list = get_bucket_list(batch_size, dataset_paths, image_ext)
print("Creating epoch batches")
epoch_batch = []
images_left_out_count = 0
for key, bucket in bucket_list.items():
random.shuffle(bucket)
bucket_len = len(bucket)
images_left_out = bucket_len % batch_size
images_left_out_count= images_left_out_count + images_left_out
for i in range(int((bucket_len - images_left_out) / batch_size)):
epoch_batch.append(bucket[i*batch_size:(i+1)*batch_size])
print(print_filler)
print(f"Images left out from bucket {key}: {images_left_out}")
print(f"Images left in the bucket {key}: {bucket_len - images_left_out}")
print(print_filler)
print(f"Images that got left out from the epoch: {images_left_out_count}")
print(f"Total images left in the epoch: {len(epoch_batch) * batch_size}")
print(f"Batches * Batch Size: {len(epoch_batch)} * {batch_size}")
print(print_filler + "\n")
random.shuffle(epoch_batch)
os.makedirs(os.path.dirname(dataset_index), exist_ok=True)
with open(dataset_index, "w") as f:
json.dump(epoch_batch, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a model with a given config')
parser.add_argument('config_path', type=str)
args = parser.parse_args()
with open(args.config_path, "r") as f:
config = json.load(f)
if config["tunableop"]:
torch.cuda.tunable.enable(val=True)
try:
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except Exception:
pass
first_epoch = 0
current_epoch = 0
current_step = 0
start_step = 0
accelerator = Accelerator(
mixed_precision=config["mixed_precision"],
gradient_accumulation_steps=config["gradient_accumulation_steps"],
log_with=config["log_with"],
project_dir=config["project_dir"],
dynamo_backend=config["dynamo_backend"],
)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
return model._orig_mod if isinstance(model, torch._dynamo.eval_frame.OptimizedModule) else model
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
if isinstance(unwrap_model(model), latent_utils.get_latent_model_class(config["model_type"])):
unwrap_model(model).save_pretrained(os.path.join(output_dir, "decoder_model"))
else:
raise ValueError(f"Wrong model supplied: {type(model)=}.")
weights.pop()
def load_model_hook(models, input_dir):
for _ in range(len(models)):
model = models.pop()
if isinstance(unwrap_model(model), latent_utils.get_latent_model_class(config["model_type"])):
load_model = latent_utils.get_latent_model_class(config["model_type"]).from_pretrained(input_dir, subfolder="decoder_model")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
else:
raise ValueError(f"Unsupported model found: {type(model)=}")
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
accelerator.print("\n" + print_filler)
batch_size = config["batch_size"]
if accelerator.is_local_main_process and not os.path.exists(config["dataset_index"]):
get_batches(batch_size, config["dataset_paths"], config["dataset_index"], config["image_ext"])
accelerator.wait_for_everyone()
with open(config["dataset_index"], "r") as f:
epoch_batch = json.load(f)
dtype = getattr(torch, config["weights_dtype"])
print(f"Loading latent models with dtype {dtype} to device {accelerator.device}")
accelerator.print(print_filler)
model, image_processor = latent_utils.get_latent_model(config["model_type"], config["model_path"], accelerator.device, dtype, "no")
if config["gradient_checkpointing"]:
model.enable_gradient_checkpointing()
dataset = loader_utils.LatentAndImagesDataset(epoch_batch, image_processor)
train_dataloader = DataLoader(dataset=dataset, batch_size=None, batch_sampler=None, shuffle=False, pin_memory=True, num_workers=config["max_load_workers"], prefetch_factor=int(config["load_queue_lenght"]/config["max_load_workers"]))
optimizer = train_utils.get_optimizer(config["optimizer"], model.parameters(), config["learning_rate"], **config["optimizer_args"])
lr_scheduler = train_utils.get_lr_scheduler(config["lr_scheduler"], optimizer, **config["lr_scheduler_args"])
train_dataloader, model, optimizer, lr_scheduler = accelerator.prepare(train_dataloader, model, optimizer, lr_scheduler)
if config.get("resume_from", "") and config["resume_from"] != "none":
accelerator.print(f"Resuming from: {config['resume_from']}")
accelerator.load_state(os.path.join(config["project_dir"], config["resume_from"]))
current_step = int(config["resume_from"].split("-")[1])
first_epoch = current_step // math.ceil(len(train_dataloader) / config["gradient_accumulation_steps"])
current_epoch = first_epoch
start_step = current_step
if config["ema_update_steps"] > 0 and accelerator.is_main_process:
ema_dtype = getattr(torch, config["ema_weights_dtype"])
accelerator.print("\n" + print_filler)
print(f'Loading EMA models with dtype {ema_dtype} to device {"cpu" if config["update_ema_on_cpu"] or config["offload_ema_to_cpu"] else accelerator.device}')
accelerator.print(print_filler)
if config.get("resume_from", "") and config["resume_from"] != "none":
ema_model = EMAModel.from_pretrained(os.path.join(config["project_dir"], config["resume_from"], "diffusion_ema_model"), latent_utils.get_latent_model_class(config["model_type"]), foreach=config["use_foreach_ema"])
ema_model.to("cpu" if config["update_ema_on_cpu"] or config["offload_ema_to_cpu"] else accelerator.device, dtype=ema_dtype)
else:
ema_model, _ = latent_utils.get_latent_model(config["model_type"], config["model_path"], "cpu" if config["update_ema_on_cpu"] or config["offload_ema_to_cpu"] else accelerator.device, ema_dtype, "no")
ema_model = EMAModel(ema_model.parameters(), model_cls=latent_utils.get_latent_model_class(config["model_type"]), model_config=ema_model.config, foreach=config["use_foreach_ema"], decay=config["ema_decay"])
if config["offload_ema_pin_memory"]:
ema_model.pin_memory()
accelerator.init_trackers(project_name=config["project_name"], config=config)
progress_bar = tqdm(
range(0, math.ceil(len(train_dataloader) / config["gradient_accumulation_steps"]) * config["epochs"]),
initial=current_step,
disable=not accelerator.is_local_main_process,
)
grad_norm = 0
grad_mean = 0
clipped_grad_mean = 0
grad_norm_count = 0
grad_mean_count = 0
clipped_grad_mean_count = 0
grad_max = 0
grad_max = 0
if hasattr(model, "decoder") and hasattr(model, "encoder"):
model.eval()
model.requires_grad_(False)
model.encoder.eval()
model.encoder.requires_grad_(False)
model.decoder.train()
model.decoder.requires_grad_(True)
else:
model.train()
getattr(torch, accelerator.device.type).empty_cache()
for _ in range(first_epoch, config["epochs"]):
for epoch_step, (latents_list, image_tensors_list) in enumerate(train_dataloader):
with torch.no_grad():
latents = []
for i in range(len(latents_list)):
latents.append(latents_list[i].to(accelerator.device, dtype=torch.float32))
latents = torch.stack(latents).to(accelerator.device, dtype=torch.float32)
image_tensors = []
for i in range(len(image_tensors_list)):
image_tensors.append(image_tensors_list[i].to(accelerator.device, dtype=torch.float32))
image_tensors = torch.stack(image_tensors).to(accelerator.device, dtype=torch.float32)
with accelerator.accumulate(model):
model_pred = latent_utils.decode_latents(model, image_processor, latents, config["model_type"], accelerator.device, return_image=False, mixed_precision=config["mixed_precision"])
loss = torch.nn.functional.l1_loss(model_pred, image_tensors, reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
if config["log_grad_stats"]:
for parameter in model.parameters():
if hasattr(parameter, "grad"):
param_grad_abs = parameter.grad.abs()
grad_max = max(grad_max, param_grad_abs.max().item())
grad_mean += param_grad_abs.mean().item()
grad_mean_count += 1
if config["max_grad_clip"] > 0:
accelerator.clip_grad_value_(model.parameters(), config["max_grad_clip"])
if config["log_grad_stats"]:
for parameter in model.parameters():
if hasattr(parameter, "grad"):
clipped_grad_mean += parameter.grad.abs().mean().item()
clipped_grad_mean_count += 1
if config["max_grad_norm"] > 0:
grad_norm += accelerator.clip_grad_norm_(model.parameters(), config["max_grad_norm"])
grad_norm_count += 1
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
if config["ema_update_steps"] > 0 and current_step % config["ema_update_steps"] == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if config["update_ema_on_cpu"]:
gc.collect()
model.to(device="cpu", non_blocking=False)
elif config["offload_ema_to_cpu"]:
ema_model.to(device=accelerator.device, non_blocking=config["offload_ema_non_blocking"])
ema_model.step(model.parameters())
if config["update_ema_on_cpu"]:
model.to(device=accelerator.device, non_blocking=False)
elif config["offload_ema_to_cpu"]:
ema_model.to(device="cpu", non_blocking=config["offload_ema_non_blocking"])
gc.collect()
accelerator.wait_for_everyone()
progress_bar.update(1)
current_step = current_step + 1
if current_step % config["checkpoint_save_steps"] == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
accelerator.print("\n" + print_filler)
os.makedirs(config["project_dir"], exist_ok=True)
if config["checkpoints_limit"] != 0:
checkpoints = os.listdir(config["project_dir"])
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
if len(checkpoints) >= config["checkpoints_limit"]:
num_to_remove = len(checkpoints) - config["checkpoints_limit"] + 1
removing_checkpoints = checkpoints[0:num_to_remove]
accelerator.print(f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints")
accelerator.print(f"Removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(config["project_dir"], removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(config["project_dir"], f"checkpoint-{current_step}")
accelerator.print(f"Saving state to {save_path}")
accelerator.save_state(save_path)
if config["ema_update_steps"] > 0:
gc.collect()
accelerator.print(f"Saving EMA state to {save_path}")
save_ema_model, _ = latent_utils.get_latent_model(config["model_type"], config["model_path"], "cpu", ema_dtype, "no")
save_ema_model_state_dict = ema_model.state_dict()
save_ema_model_state_dict.pop("shadow_params", None)
save_ema_model.register_to_config(**save_ema_model_state_dict)
ema_model.copy_to(save_ema_model.parameters())
save_ema_model.save_pretrained(os.path.join(save_path, "diffusion_ema_model"))
del save_ema_model
gc.collect()
accelerator.print(f"\nSaved states to {save_path}")
accelerator.print(print_filler)
accelerator.wait_for_everyone()
logs = {"loss": loss.detach().item(), "epoch": current_epoch}
logs["lr"] = lr_scheduler.get_last_lr()[0]
if config["log_grad_stats"]:
logs["grad_max"] = grad_max
grad_max = 0
if grad_mean_count > 0:
logs["grad_mean"] = grad_mean / grad_mean_count
grad_mean = 0
grad_mean_count = 0
if clipped_grad_mean_count > 0:
logs["clipped_grad_mean"] = clipped_grad_mean / clipped_grad_mean_count
clipped_grad_mean = 0
clipped_grad_mean_count = 0
if grad_norm_count > 0:
logs["grad_norm"] = grad_norm / grad_norm_count
grad_norm = 0
grad_norm_count = 0
if accelerator.is_main_process:
if config["ema_update_steps"] > 0:
logs["ema_decay"] = ema_model.get_decay(ema_model.optimization_step)
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=current_step)
if current_step == start_step + 1 or (config["gc_steps"] != 0 and current_step % config["gc_steps"] == 0):
gc.collect()
getattr(torch, accelerator.device.type).empty_cache()
current_epoch = current_epoch + 1
accelerator.print("\n" + print_filler)
accelerator.print(f"Starting epoch {current_epoch}")
accelerator.print(f"Current steps done: {current_step}")
if config["reshuffle"]:
train_dataloader = accelerator.unwrap_model(train_dataloader)
del dataset, train_dataloader
if accelerator.is_local_main_process:
os.rename(config["dataset_index"], config["dataset_index"]+"-epoch_"+str(current_epoch-1)+".json")
get_batches(batch_size, config["dataset_paths"], config["dataset_index"], config["image_ext"])
accelerator.wait_for_everyone()
with open(config["dataset_index"], "r") as f:
epoch_batch = json.load(f)
dataset = loader_utils.LatentAndImagesDataset(epoch_batch, image_processor)
train_dataloader = DataLoader(dataset=dataset, batch_size=None, batch_sampler=None, shuffle=False, pin_memory=True, num_workers=config["max_load_workers"], prefetch_factor=int(config["load_queue_lenght"]/config["max_load_workers"]))
train_dataloader = accelerator.prepare(train_dataloader)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
model = unwrap_model(model)
save_path = os.path.join(config["project_dir"], "checkpoint-final")
accelerator.print("\n" + print_filler)
accelerator.print(f"Saving state to {save_path}")
accelerator.save_state(save_path)
if config["ema_update_steps"] > 0:
gc.collect()
accelerator.print(f"Saving EMA state to {save_path}")
save_ema_model, _ = train_utils.get_diffusion_model(config["model_type"], config["model_path"], "cpu", ema_dtype)
save_ema_model_state_dict = ema_model.state_dict()
save_ema_model_state_dict.pop("shadow_params", None)
save_ema_model.register_to_config(**save_ema_model_state_dict)
ema_model.copy_to(save_ema_model.parameters())
save_ema_model.save_pretrained(os.path.join(save_path, "diffusion_ema_model"))
del save_ema_model
gc.collect()
accelerator.print(f"\nSaved states to {save_path}")
accelerator.end_training()