-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhijacks.py
349 lines (302 loc) · 15.2 KB
/
hijacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
from functools import wraps
from contextlib import nullcontext
import torch
import numpy as np
device_supports_fp64 = torch.xpu.has_fp64_dtype() if hasattr(torch.xpu, "has_fp64_dtype") else torch.xpu.get_device_properties("xpu").has_fp64
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return nullcontext()
@property
def is_cuda(self):
return self.device.type == 'xpu' or self.device.type == 'cuda'
def check_device(device):
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
def return_xpu(device):
return f"xpu:{device.split(':')[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device(f"xpu:{device.index}" if device.index is not None else "xpu") if isinstance(device, torch.device) else "xpu"
# Autocast
original_autocast_init = torch.amp.autocast_mode.autocast.__init__
@wraps(torch.amp.autocast_mode.autocast.__init__)
def autocast_init(self, device_type, dtype=None, enabled=True, cache_enabled=None):
if device_type == "cuda":
return original_autocast_init(self, device_type="xpu", dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
else:
return original_autocast_init(self, device_type=device_type, dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
# Latent Antialias CPU Offload:
original_interpolate = torch.nn.functional.interpolate
@wraps(torch.nn.functional.interpolate)
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
if mode in {'bicubic', 'bilinear'}:
return_device = tensor.device
return_dtype = tensor.dtype
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
else:
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
# Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
original_from_numpy = torch.from_numpy
@wraps(torch.from_numpy)
def from_numpy(ndarray):
if ndarray.dtype == float:
return original_from_numpy(ndarray.astype('float32'))
else:
return original_from_numpy(ndarray)
original_as_tensor = torch.as_tensor
@wraps(torch.as_tensor)
def as_tensor(data, dtype=None, device=None):
if check_device(device):
device = return_xpu(device)
if isinstance(data, np.ndarray) and data.dtype == float and not (
(isinstance(device, torch.device) and device.type == "cpu") or (isinstance(device, str) and "cpu" in device)):
return original_as_tensor(data, dtype=torch.float32, device=device)
else:
return original_as_tensor(data, dtype=dtype, device=device)
if device_supports_fp64 and os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is None:
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
else:
# 32 bit attention workarounds for Alchemist:
try:
from .attention import torch_bmm_32_bit as original_torch_bmm
from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention
except Exception: # pylint: disable=broad-exception-caught
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
# Data Type Errors:
@wraps(torch.bmm)
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
return original_torch_bmm(input, mat2, out=out)
@wraps(torch.nn.functional.scaled_dot_product_attention)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs):
if query.dtype != key.dtype:
key = key.to(dtype=query.dtype)
if query.dtype != value.dtype:
value = value.to(dtype=query.dtype)
if attn_mask is not None and query.dtype != attn_mask.dtype:
attn_mask = attn_mask.to(dtype=query.dtype)
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
# Diffusers FreeU
original_fft_fftn = torch.fft.fftn
@wraps(torch.fft.fftn)
def fft_fftn(input, s=None, dim=None, norm=None, *, out=None):
return_dtype = input.dtype
return original_fft_fftn(input.to(dtype=torch.float32), s=s, dim=dim, norm=norm, out=out).to(dtype=return_dtype)
# Diffusers FreeU
original_fft_ifftn = torch.fft.ifftn
@wraps(torch.fft.ifftn)
def fft_ifftn(input, s=None, dim=None, norm=None, *, out=None):
return_dtype = input.dtype
return original_fft_ifftn(input.to(dtype=torch.float32), s=s, dim=dim, norm=norm, out=out).to(dtype=return_dtype)
# A1111 FP16
original_functional_group_norm = torch.nn.functional.group_norm
@wraps(torch.nn.functional.group_norm)
def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_group_norm(input, num_groups, weight=weight, bias=bias, eps=eps)
# A1111 BF16
original_functional_layer_norm = torch.nn.functional.layer_norm
@wraps(torch.nn.functional.layer_norm)
def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_layer_norm(input, normalized_shape, weight=weight, bias=bias, eps=eps)
# Training
original_functional_linear = torch.nn.functional.linear
@wraps(torch.nn.functional.linear)
def functional_linear(input, weight, bias=None):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_linear(input, weight, bias=bias)
original_functional_conv1d = torch.nn.functional.conv1d
@wraps(torch.nn.functional.conv1d)
def functional_conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_conv1d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
original_functional_conv2d = torch.nn.functional.conv2d
@wraps(torch.nn.functional.conv2d)
def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_conv2d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
# LTX Video
original_functional_conv3d = torch.nn.functional.conv3d
@wraps(torch.nn.functional.conv3d)
def functional_conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_conv3d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
# SwinIR BF16:
original_functional_pad = torch.nn.functional.pad
@wraps(torch.nn.functional.pad)
def functional_pad(input, pad, mode='constant', value=None):
if mode == 'reflect' and input.dtype == torch.bfloat16:
return original_functional_pad(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16)
else:
return original_functional_pad(input, pad, mode=mode, value=value)
original_torch_tensor = torch.tensor
@wraps(torch.tensor)
def torch_tensor(data, *args, dtype=None, device=None, **kwargs):
if check_device(device):
device = return_xpu(device)
if not device_supports_fp64:
if (isinstance(device, torch.device) and device.type == "xpu") or (isinstance(device, str) and "xpu" in device):
if dtype == torch.float64:
dtype = torch.float32
elif dtype is None and (hasattr(data, "dtype") and (data.dtype == torch.float64 or data.dtype == float)):
dtype = torch.float32
return original_torch_tensor(data, *args, dtype=dtype, device=device, **kwargs)
original_Tensor_to = torch.Tensor.to
@wraps(torch.Tensor.to)
def Tensor_to(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_to(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_to(self, device, *args, **kwargs)
original_Tensor_cuda = torch.Tensor.cuda
@wraps(torch.Tensor.cuda)
def Tensor_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_cuda(self, device, *args, **kwargs)
original_Tensor_pin_memory = torch.Tensor.pin_memory
@wraps(torch.Tensor.pin_memory)
def Tensor_pin_memory(self, device=None, *args, **kwargs):
if device is None:
device = "xpu"
if check_device(device):
return original_Tensor_pin_memory(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_pin_memory(self, device, *args, **kwargs)
original_UntypedStorage_init = torch.UntypedStorage.__init__
@wraps(torch.UntypedStorage.__init__)
def UntypedStorage_init(*args, device=None, **kwargs):
if check_device(device):
return original_UntypedStorage_init(*args, device=return_xpu(device), **kwargs)
else:
return original_UntypedStorage_init(*args, device=device, **kwargs)
original_UntypedStorage_cuda = torch.UntypedStorage.cuda
@wraps(torch.UntypedStorage.cuda)
def UntypedStorage_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_UntypedStorage_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_UntypedStorage_cuda(self, device, *args, **kwargs)
original_torch_empty = torch.empty
@wraps(torch.empty)
def torch_empty(*args, device=None, **kwargs):
if check_device(device):
return original_torch_empty(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_empty(*args, device=device, **kwargs)
original_torch_randn = torch.randn
@wraps(torch.randn)
def torch_randn(*args, device=None, dtype=None, **kwargs):
if dtype is bytes:
dtype = None
if check_device(device):
return original_torch_randn(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_randn(*args, device=device, **kwargs)
original_torch_ones = torch.ones
@wraps(torch.ones)
def torch_ones(*args, device=None, **kwargs):
if check_device(device):
return original_torch_ones(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_ones(*args, device=device, **kwargs)
original_torch_zeros = torch.zeros
@wraps(torch.zeros)
def torch_zeros(*args, device=None, **kwargs):
if check_device(device):
return original_torch_zeros(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_zeros(*args, device=device, **kwargs)
original_torch_full = torch.full
@wraps(torch.full)
def torch_full(*args, device=None, **kwargs):
if check_device(device):
return original_torch_full(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_full(*args, device=device, **kwargs)
original_torch_linspace = torch.linspace
@wraps(torch.linspace)
def torch_linspace(*args, device=None, **kwargs):
if check_device(device):
return original_torch_linspace(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_linspace(*args, device=device, **kwargs)
original_torch_Generator = torch.Generator
@wraps(torch.Generator)
def torch_Generator(device=None):
if check_device(device):
return original_torch_Generator(return_xpu(device))
else:
return original_torch_Generator(device)
original_torch_load = torch.load
@wraps(torch.load)
def torch_load(f, map_location=None, *args, **kwargs):
if map_location is None:
map_location = "xpu"
if check_device(map_location):
return original_torch_load(f, *args, map_location=return_xpu(map_location), **kwargs)
else:
return original_torch_load(f, *args, map_location=map_location, **kwargs)
# Hijack Functions:
def ipex_hijacks(legacy=True):
if legacy and float(torch.__version__[:3]) < 2.5:
torch.nn.functional.interpolate = interpolate
torch.tensor = torch_tensor
torch.Tensor.to = Tensor_to
torch.Tensor.cuda = Tensor_cuda
torch.Tensor.pin_memory = Tensor_pin_memory
torch.UntypedStorage.__init__ = UntypedStorage_init
torch.UntypedStorage.cuda = UntypedStorage_cuda
torch.empty = torch_empty
torch.randn = torch_randn
torch.ones = torch_ones
torch.zeros = torch_zeros
torch.full = torch_full
torch.linspace = torch_linspace
torch.Generator = torch_Generator
torch.load = torch_load
torch.backends.cuda.sdp_kernel = return_null_context
torch.nn.DataParallel = DummyDataParallel
torch.UntypedStorage.is_cuda = is_cuda
torch.amp.autocast_mode.autocast.__init__ = autocast_init
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
torch.nn.functional.group_norm = functional_group_norm
torch.nn.functional.layer_norm = functional_layer_norm
torch.nn.functional.linear = functional_linear
torch.nn.functional.conv1d = functional_conv1d
torch.nn.functional.conv2d = functional_conv2d
torch.nn.functional.conv3d = functional_conv3d
torch.nn.functional.pad = functional_pad
torch.bmm = torch_bmm
torch.fft.fftn = fft_fftn
torch.fft.ifftn = fft_ifftn
if not device_supports_fp64:
torch.from_numpy = from_numpy
torch.as_tensor = as_tensor