-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerator.py
113 lines (82 loc) · 3.21 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#-- coding: utf-8 -*-
import argparse
from hbconfig import Config
import numpy as np
import tensorflow as tf
from data_loader import TextLoader
from model import CharRNN
class SamhangSiGenerator:
SENTENCE_LENGTH = 20
def __init__(self):
self._set_data()
self._make_estimator()
def _set_data(self):
data_loader = TextLoader(Config.data.data_dir)
Config.data.vocab_size = data_loader.vocab_size
def get_rev_vocab(vocab):
if vocab is None:
return None
return {idx: key for key, idx in vocab.items()}
self.vocab = data_loader.vocab
self.rev_vocab = get_rev_vocab(data_loader.vocab)
def _make_estimator(self):
params = tf.contrib.training.HParams(**Config.model.to_dict())
run_config = tf.contrib.learn.RunConfig(
model_dir=Config.train.model_dir)
char_rnn = CharRNN()
self.estimator = tf.estimator.Estimator(
model_fn=char_rnn.model_fn,
model_dir=Config.train.model_dir,
params=params,
config=run_config)
def generate(self, word):
result = ""
for char in word:
result += self._generate_sentence(char)
return self._combine_sentence(result, word)
def _generate_sentence(self, char):
if char not in self.vocab:
raise ValueError(f"'{char}' is not trained. (can use char in vocab)")
sample = self.vocab[char]
sentence = [sample]
for _ in range(self.SENTENCE_LENGTH):
X = np.zeros((1, 1), dtype=np.int32)
X[0, 0] = sample
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"input_data": X},
num_epochs=1,
shuffle=False)
result = self.estimator.predict(input_fn=predict_input_fn)
probs = next(result)["probs"]
def weighted_pick(weights):
t = np.cumsum(weights)
s = np.sum(weights)
return(int(np.searchsorted(t, np.random.rand(1)*s)))
sample = weighted_pick(probs)
sentence.append(sample)
sentence = list(map(lambda sample: self.rev_vocab.get(sample, ''), sentence))
sentence = "".join(sentence)
return sentence
def _combine_sentence(self, result, word):
print("word: " + word)
result = result.replace("\n", " ")
for char in word[1:]:
result = result.replace(char, "\n"+char, 1)
return result
def main(word):
samhangsi_generator = SamhangSiGenerator()
result = samhangsi_generator.generate(word)
print(result)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, default='config',
help='config file name')
parser.add_argument('--word', type=str, default='삼행시',
help='Input Korean word (ex. 삼행시)')
args = parser.parse_args()
Config(args.config)
Config.model.batch_size = 1
Config.model.seq_length = 1
print("Config: ", Config)
main(args.word)