From acd1e8f5300c1b7c2cb6096434dc13ccbd5f8b20 Mon Sep 17 00:00:00 2001 From: TuomasBorman Date: Mon, 5 Feb 2024 14:24:26 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20EBI-Meta?= =?UTF-8?q?genomics/MGnifyR@64fffce80f8fec3198701d59e0959cc7936a4e73=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- articles/MGnifyR.html | 32 ++++++++++++------ pkgdown.yml | 2 +- .../analyses/MGYA00377505_format_json/.RDS | Bin 1001 -> 1001 bytes .../samples/ERS2967391_format_json/.RDS | Bin 1043 -> 1043 bytes 4 files changed, 23 insertions(+), 11 deletions(-) diff --git a/articles/MGnifyR.html b/articles/MGnifyR.html index faf51076..1a258dc1 100644 --- a/articles/MGnifyR.html +++ b/articles/MGnifyR.html @@ -102,9 +102,8 @@

Introduction

Installation

-

MGnifyR is currently hosted on GitHub, and can be -installed using via devtools. MGnifyR should -be built using the following snippet.

+

MGnifyR is hosted on Bioconductor, and can be installed +using via BiocManager.

 BiocManager::install(MGnifyR)
@@ -230,7 +229,9 @@

Functions for fetching the data

Search data

-

Below, we fetch information on samples of drinking water.

+

doQuery() function can be utilized to search results +such as samples and studies from MGnify database. Below, we fetch +information drinking water samples.

+

The result is a table containing accession IDs and description – in +this case – on samples.

 head(samples)
 #>                  biosample   accession sample-desc
@@ -347,6 +350,8 @@ 

Find relevent analyses
 analyses_accessions <- searchAnalysis(mg, "samples", samples$accession)
+

By running the searchAnalysis() function, we get +analysis IDs of samples that we fed as an input.

 head(analyses_accessions)
 #> [1] "MGYA00652201" "MGYA00652185" "MGYA00643487" "MGYA00643486" "MGYA00643485"
@@ -356,9 +361,12 @@ 

Find relevent analysesFetch metadata

We can now check the metadata to get hint of what kind of data we -have.

+have. We use getMetadata() function to fetch data based on +analysis IDs.

 analyses_metadata <- getMetadata(mg, analyses_accessions)
+

Metadata includes for example information on how analysis was +conducted and what kind of samples were analyzed.

 head(analyses_metadata)
 #>              analysis_analysis-status analysis_pipeline-version
@@ -684,7 +692,7 @@ 

Fetch microbiome dataTreeSE object is uniquely positioned to support SummarizedExperiment-based microbiome data manipulation and visualization. Moreover, it enables access to miaverse -tools. For example, we can estimate diversity of samples.

+tools. For example, we can estimate diversity of samples…

 mae[[1]] <- estimateDiversity(mae[[1]], index = "shannon")
 
@@ -694,6 +702,7 @@ 

Fetch microbiome data plotColData(mae[[1]], "shannon", x = "sample_environment..biome.")

+

… and plot abundances of most abundant phyla.

 # Agglomerate data
 altExps(mae[[1]]) <- splitByRanks(mae[[1]])
@@ -705,8 +714,8 @@ 

Fetch microbiome datatop_taxa <- getTopFeatures(altExp(mae[[1]], "Phylum"), 10) plotAbundance(altExp(mae[[1]], "Phylum")[top_taxa, ], rank = "Phylum")

-

We can perform principal component analysis to microbial profiling -data by utilizing miaverse tools.

+

We can also perform other analyses such as principal component +analysis to microbial profiling data by utilizing miaverse tools.

 # Apply relative transformation
 mae[[1]] <- transformAssay(mae[[1]], method = "relabundance")
@@ -729,8 +738,10 @@ 

Fetch sequence filessearchFile(), we can search files from the database.

-# Find list of available downloads, and filter for 
-dl_urls <- searchFile(mg, analyses_accessions, type = "analyses")
+dl_urls <- searchFile(mg, analyses_accessions, type = "analyses")

+

The returned table contains search results related to analyses that +we fed as an input. The table contains information on file and also URL +address from where the file can be loaded.

 target_urls <- dl_urls[
     dl_urls$attributes.description.label == "Predicted alpha tmRNA", ]
@@ -817,6 +828,7 @@ 

Fetch sequence files# Just select a single file from the target_urls list for demonstration. file_url <- target_urls$download_url[[1]] cached_location <- getFile(mg, file_url)

+

The function returns a path where the file is stored.

 # Where are the files?
 cached_location
diff --git a/pkgdown.yml b/pkgdown.yml
index 1ad39694..1827a07d 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -4,5 +4,5 @@ pkgdown_sha: ~
 articles:
   MGnifyR: MGnifyR.html
   MGnifyR_long: MGnifyR_long.html
-last_built: 2024-02-05T08:45Z
+last_built: 2024-02-05T13:31Z
 
diff --git a/reference/.MGnifyR_cache/analyses/MGYA00377505_format_json/.RDS b/reference/.MGnifyR_cache/analyses/MGYA00377505_format_json/.RDS
index 87af23ed022f269e014e99ac3391d39d2b416804..b7733dae8715f752fdda1c697c846839524a6478 100644
GIT binary patch
delta 993
zcmV<710MY82k8fp7Jt)dqA}6%i$9sJErn7{j9L6Tzr~C#Q4#1Z@3fxE`Mj%JnDp9mk5EK8VhZT
zJwY5?yInT@j=uIpC4t?NzLy;4q%R~d2>;c`5!Rel-E#C
z;Gov?0v8E|``9KuV%K_v!Z2Z{)8KU7Y@78lxQ#yr@I0A=hhlar`g35kzz4d~Tmp>N
z92g;UFg#ttz<+mL#9?9`knSI0n00n-49b!kZ^WtS^N~dYGwT9JLna-n62N}7l
zVOj0g5)?j6DLiDr>F2=f*of625bb_Oc&lMpddpmf-rdjh8ExoV!_b$Y=<$T2s~BpT
z))MqTIQ9ghGgMBMoGsHbOx-Z9rgUP98!i^;6f@5yc7JASv$3ydhPG|b^(my5lbOhr
z*QlgMb$awk%iXDKdRx&ewF4)wGvX5(StacnVZdCL&$~{(O9(Jp0MP%1M%wpbIb0izz2|1|^uQWUsA7aqtB
zRnEizEm$P>72z)D97B}=3T|d>=he|sy=^t?&AfK0lB%y|;!N^0vDd4`d5Msym#T{q
zksx)DKvyMYi=(K(&)}s~Z<{Tno!5XY&db}yd5OWOm)h4r&FXWMu02P;7cS_L6oziV
zgMUUt5WMaJ`E6e60
zonq#>#GVfobKXiI%Nf}Rov`Z?0gyEo+7x?&IJm~~j}S8(XO+0FTlKcCH(}LEIW=Bo
z$Q=upCFwIfl=J6^h8S*s<zjy2jM1N;MPNkd;(=trmFfIog<+~_P
z$Dj0ax9XbSRy0$oo5z}V5P!3FK79A?TnQkdWyZE%939o$RlG@gL{%ovq@gC(da<~HA|~nu^m2w6
zGj)(am-T9AS+AaY3a7;V-|`vIj+)6;Z=#cBc{|>KQ4gB6t0SH(JPNSCD_LBjq$@9!
zUw;bY9x@{Eic{PM7okI@ddld4+|l3z1oOJt#q->o#Z8pZQPcSUFxf3#!eS{5J*WqL
ztN_hc?q3wOyECd-r`|SOMmz7Uw77R)U&6a1GU^5T)%tcqct^&z+;9qX)$&9m$CBqe
zIbC2feS21SmCWspmzQ0OJcvOJmntPSP+FqP+9HoP(2De7-$D4E1ftw@vZW%@;yoQp4=zrDNh3k&QQ;!j;E${WOuI+BCecWv(4<5qz
zaj5at#rXF>4*q0n9ijJ_Nf}3jY5&euQQFuhSn1+(S4WnAgNoyQW
zGg#Zn;`W5hQ~5n+0ZIN;15Q=E$x1MfJYT#Zt}??-HQC2kL{h1SOw3UK{2ZNqe`*e}
z!V64W|NKudJ{=J;^07CjuE~TOd*&Gvd_+|+AkQ`R2c5cYx1ADzSSx|JBH+rOo0tzQ
z;hU1+&wVlikq+$P^^B_5#Al#c0=oBI!5Bm<1O<^;${V}UY@x;pYLwxcBf{^gFZh&j
zWj?#3ke#~u`}k!5E_2ODS^|a-3mAq3tH57E@pOizA~W!hZz>;jB5e<1qDp}DQ3294
zJe6XmW2!}PO7;k5ria}LP=}^;xbVoYk_CfN8L>H(sS5LGuynuuLQL7x%ur`
z&vshJ&5j;7ojLQuHxpW3GozUe;p|RF(&;*FCut;0em`1x?55f7opgH*TMOx7TJ~ub
zrcEp!tWY@QMB_wqBv>9x(uJ)3rwiD1iIh;;=_G|YW^mDOyCTNbWd7U~
N{0rebC%>W(005c7{$2n8

literal 1043
zcmV+u1nm1CiwFP!000001GQJ(ZW~1u-uQ=*v?)nbKzg
zC8+{e)nq+hPd%R9?##w@#WV2$yZ{$G1up`e{q^qH4z0{uvS&T#c;-9jJM*3K&%2tY
zRkd0TKI`zP)n8nnp)Nce!h1{8D&ZJf_M`7LZ3o6}fu|lLLYdwjTwa;IcIT+qN`80%
z??<7>H|OKu|JeWYd9v`M#9mcacue^n5t2GsQkUy;?h$p5DUsMA+?|G&zcsB^$yw_h
zPcvB6WU@LT^VEKaSwNC6wSZF@FR~KML(g|#5nJlvqKfU)OCqR{Bj(P~;Oq>Y{&=Df
zvBV2ZTmSq|Fg|yP>-g9kQ(I@Q9cShlbGbuhFeJ|v_Yb-a)9hF!05MhqvE6`6f39Ob
zG+bX71b^uh2TUrk2UjyH-x8mJX9?&&vR%f2tq>G2u~au^v(-k;W7I4oHHU=XQQzfL
z!lnM~mO^!^;qT$s0i?{$KfW$~@QJ)V;6#=H>5~Ga
zX}BxJOvO}>;FO#Z%ybXi6OazY>0ptOUj++>P8r-B2=Y20+@{>oLBPiDP;vN>G8RlJ
zFGD~+TP+|kuF{X~<94Il>Y610*{57cKZvSf>JAB0><-@JTDuR6LUc%Nx%{DUID=Z61Ef86h`n>6j>+=RQ%$GM-r*SzrIW_fb{KkcLKG(lL
z?VDEnsMS?@Qk-CjtA(6yy
z5KZIQj
z9lSXI1`mhIQF7Eff|c3^~6$U
N{skn3uR5X+0064U{1E^E