Skip to content

Latest commit

 

History

History
43 lines (29 loc) · 3.13 KB

File metadata and controls

43 lines (29 loc) · 3.13 KB

MBPP

Paper

Program Synthesis with Large Language Models https://arxiv.org/abs/2108.07732

This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.

Homepage: https://github.com/google-research/google-research/tree/master/mbpp

Citation

@article{austin2021program,
  title={Program synthesis with large language models},
  author={Austin, Jacob and Odena, Augustus and Nye, Maxwell and Bosma, Maarten and Michalewski, Henryk and Dohan, David and Jiang, Ellen and Cai, Carrie and Terry, Michael and Le, Quoc and others},
  journal={arXiv preprint arXiv:2108.07732},
  year={2021}
}

Groups and Tasks

Groups

  • Not part of a group yet.

Tasks

  • mbpp

Checklist

For adding novel benchmarks/datasets to the library:

  • Is the task an existing benchmark in the literature?
    • Have you referenced the original paper that introduced the task?
    • If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?

If other tasks on this dataset are already supported:

  • Is the "Main" variant of this task clearly denoted?
  • Have you provided a short sentence in a README on what each new variant adds / evaluates?
  • Have you noted which, if any, published evaluation setups are matched by this variant?