forked from karpathy/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcsv_logging.py
166 lines (132 loc) · 5.65 KB
/
csv_logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Authored by Gavia Gray (https://github.com/gngdb)
Wrapper for wandb logging with efficient CSV logging and correct config JSON writing.
The CSV structure maintains a consistent order of keys based on their first appearance,
using a simple list for ordering. This ensures data integrity and allows for graceful
failure and manual recovery if needed.
Example usage:
run = wandb.init(config=your_config)
wrapper = LogWrapper(run, out_dir='path/to/output')
...
# in train loop
wrapper.log({"train/loss": 0.5, "train/accuracy": 0.9, "val/loss": 0.6, "val/accuracy": 0.85})
wrapper.print("Train: {loss=:.4f}, {accuracy=:.2%}", prefix="train/")
wrapper.print("Val: {loss=:.4f}, {accuracy=:.2%}", prefix="val/")
wrapper.step()
...
# at the end of your script
wrapper.close()
# If the script terminates unexpectedly, you can still recover the CSV using bash:
# cat path/to/output/log_header.csv.tmp path/to/output/log_data.csv.tmp > path/to/output/log.csv
"""
import re
import os
import csv
import json
import atexit
def exists(x): return x is not None
def transform_format_string(s):
"""
Transforms a string containing f-string-like expressions to a format
compatible with str.format().
This function converts expressions like '{var=}' or '{var=:formatting}'
to 'var={var}' or 'var={var:formatting}' respectively. This allows
for f-string-like syntax to be used with str.format().
Args:
s (str): The input string containing f-string-like expressions.
Returns:
str: The transformed string, compatible with str.format().
Examples:
>>> transform_format_string("Value is {x=}")
"Value is x={x}"
>>> transform_format_string("Formatted value is {x=:.2f}")
"Formatted value is x={x:.2f}"
"""
pattern = r'\{(\w+)=(:.[^}]*)?\}'
return re.sub(pattern, lambda m: f"{m.group(1)}={{{m.group(1)}{m.group(2) or ''}}}", s)
class CSVLogWrapper:
def __init__(self, logf=None, config={}, out_dir=None):
self.logf = logf
self.config = config
self.log_dict = {}
self.out_dir = out_dir
self.csv_data_file = None
self.csv_header_file = None
self.csv_writer = None
self.step_count = 0
self.ordered_keys = []
self.header_updated = False
self.is_finalized = False
self.no_sync_keyword = 'no_sync' # Keyword to prevent syncing to wandb
if self.out_dir:
os.makedirs(self.out_dir, exist_ok=True)
self.setup_csv_writer()
self.write_config()
atexit.register(self.close)
def setup_csv_writer(self):
self.csv_data_path = os.path.join(self.out_dir, 'log_data.csv.tmp')
self.csv_header_path = os.path.join(self.out_dir, 'log_header.csv.tmp')
self.csv_data_file = open(self.csv_data_path, 'w', newline='')
self.csv_header_file = open(self.csv_header_path, 'w', newline='')
self.csv_writer = csv.writer(self.csv_data_file)
def write_config(self):
if self.config:
config_path = os.path.join(self.out_dir, 'config.json')
with open(config_path, 'w') as f:
json.dump(dict(**self.config), f, indent=2)
def log(self, data):
self.log_dict.update(data)
for key in data:
if key not in self.ordered_keys:
self.ordered_keys.append(key)
self.header_updated = True
def update_header(self):
if self.header_updated:
header = ['step'] + self.ordered_keys
with open(self.csv_header_path, 'w', newline='') as header_file:
csv.writer(header_file).writerow(header)
self.header_updated = False
def print(self, format_string, prefix=None):
format_string = transform_format_string(format_string)
if prefix:
# Filter keys with the given prefix and remove the prefix
filtered_dict = {k.replace(prefix, ''): v for k, v in self.log_dict.items() if k.startswith(prefix)}
else:
filtered_dict = self.log_dict
# replace any '/' in keys with '_'
filtered_dict = {k.replace('/', '_'): v for k, v in filtered_dict.items()}
try:
print(format_string.format(**filtered_dict))
except KeyError as e:
print(f"KeyError: {e}. Available keys: {', '.join(filtered_dict.keys())}")
raise e
def step(self):
if exists(self.logf) and self.log_dict:
self.logf({k: v for k, v in self.log_dict.items() if self.no_sync_keyword not in k})
if self.csv_writer and self.log_dict:
self.update_header()
# Prepare the row data
row_data = [self.step_count] + [self.log_dict.get(key, '') for key in self.ordered_keys]
self.csv_writer.writerow(row_data)
self.csv_data_file.flush() # Ensure data is written to file
self.step_count += 1
self.log_dict.clear()
def close(self):
if self.csv_data_file:
self.csv_data_file.close()
self.finalize_csv()
def finalize_csv(self):
if self.is_finalized:
return
csv_final_path = os.path.join(self.out_dir, 'log.csv')
with open(csv_final_path, 'w', newline='') as final_csv:
# Copy header
with open(self.csv_header_path, 'r') as header_file:
final_csv.write(header_file.read())
# Copy data
with open(self.csv_data_path, 'r') as data_file:
final_csv.write(data_file.read())
self.is_finalized = True
# Remove the temporary files
os.remove(self.csv_header_path)
os.remove(self.csv_data_path)