forked from iscilab2020/TERI-3DNLOS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSupplementaryFigures10and11_FIM_CRBmatrix.m
357 lines (288 loc) · 11.1 KB
/
SupplementaryFigures10and11_FIM_CRBmatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
%% Two-Edge-Resolved 3D NLOS Imaging (Supplementary Figures 10 and 11)
% Manuscript:
% Czajkowski, R. and Murray-Bruce, J., 'Two-edge-resolved three-dimensional non-line-of-sight
% imaging with an ordinary camera', Nat. Commun., 2023.
% Code to create Supplementary Figure 6 from Nature Comm 2-Edge NLOS Paper
% Author: Robinson Czajkowski
clear;
close all;
addpath('Functions')
fun = HiddenScene;
indfun = @(x)(x>=0);
addpath("github_repo");
N = 124;
h = 0.2;
snr = 75;
image_size = 0.5;
fit = 20000; % Figure Number
N = 256; % Pixels in length of image
h = 0.2; % Height of door head
snr = 79; % Signal to noise ratio of the observation image
image_size = 0.5; % Length of image
%Point Source at middle of scene
x = 0.5;
y = 0.5;
z = 0.5;
%Generate Cartesian observation coordinates
aa = linspace(0, 1, N+1);
aa = aa + 1/(2*N);
aa = aa(1:end-1);
bb = linspace(0, 1, N+1);
bb = bb + 1/(2*N);
bb = bb(1:end-1);
[AA, BB] = meshgrid(aa, bb);
a = AA(:);
b = BB(:);
a = a*image_size;
b = b*image_size;
f = 1/(2*N)*image_size;
rho = (x^2+y^2+z^2)^0.5;
theta = atan(y/x);
psi = atan(z/x);
phi = acos(z/rho);
% Calculate all relavent values for equations
[R, dR_dTheta, dR_dPsi, dR_dRho, H, H1, dH_dTheta, dH1_dTheta, dH_dPsi, SC, dC_dx, dC_dy, dC_dz] = compute_stuff(rho, theta, psi, a, b, f, h, N);
M_t = R.*dH_dTheta + H.*dR_dTheta;
M_p = R.*dH_dPsi + H.*dR_dPsi;
M_r = dR_dRho.*H;
M_c = R.*H;
sigma_0 = (10^(-0.1 * snr) * (sum(4*f^2*R(:))) / N)^0.5;
sigma_1 = (10^(-0.1 * snr) * (sum(H1(:).*R(:))) / N)^0.5;
sigma_2 = (10^(-0.1 * snr) * (sum(H(:).*R(:))) / N)^0.5;
M_t = reshape(M_t, N, N);
M_p = reshape(M_p, N, N);
M_r = reshape(M_r, N, N);
M_c = reshape(M_c, N, N);
% Conversion from PESC to SC
Conversion_p2s = [1 0 0 0;
0 -1/(sin(phi)^2 + (cos(theta)^2)*(cos(phi)^2)) 0 0;
0 0 1 0;
0 0 0 1]';
Conversion = [1/(1+y^2/x^2)*(-y/x^2) 1/(1+z^2/x^2)*(-z/x^2) x/(x^2+y^2+z^2)^0.5 0;
1/(1+y^2/x^2)*(1/x) 0 y/(x^2+y^2+z^2)^0.5 0;
0 1/(1+z^2/x^2)*(1/x) z/(x^2+y^2+z^2)^0.5 0;
0 0 0 1]';
Conversion1 = [Conversion(:,4) Conversion(:,3) Conversion(:,1:2)];
Conversion_c2s = [-rho*sin(theta)*sin(phi) rho*cos(theta)*cos(phi) cos(theta)*sin(phi) 0;
rho*cos(theta)*sin(phi) rho*sin(theta)*cos(phi) sin(theta)*sin(phi) 0;
0 -rho*sin(phi) cos(phi) 0;
0 0 0 1];
%
fi_cmap = [-1 1]*1.5*10^(6);
% CRB
Delta_I = [M_t(:) M_p(:) M_r(:) M_c(:)];
Fisher = (1/sigma_2^2)*(Delta_I'*Delta_I);
CRB_sph2 = Fisher^-1;
figure(fit);
imagesc(Fisher,fi_cmap);
box on;
font_size = 20;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$\theta$','$\psi$','$\rho$','$c$'})
yticklabels({'$\theta$','$\psi$','$\rho$','$c$'})
font_size = 20;
title('Fisher Information Matrix - PESC')
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5,'fontsize',font_size)
crb_cmap = [0 5]*10^-3;
%
figure(fit+1);
imagesc(CRB_sph2,crb_cmap);
title('Cramer-Rao Bound - PESC')
box on;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$\theta$','$\psi$','$\rho$','$c$'})
yticklabels({'$\theta$','$\psi$','$\rho$','$c$'})
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5,'fontsize',font_size)
% hcb.Label.Interpreter = 'latex';
%%
Delta_I_Cart = Delta_I*Conversion;
Fisher_Cart = (1/sigma_2^2)*(Delta_I_Cart'*Delta_I_Cart);
CRB_cart2 = Fisher_Cart^-1;
figure(fit+2);
imagesc(Fisher_Cart,fi_cmap);
title('Fisher Information Matrix - Cartesian')
box on;
font_size = 20;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$x$','$y$','$z$','$c$'})
yticklabels({'$x$','$y$','$z$','$c$'})
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5)
figure(fit+3);
imagesc(CRB_cart2,crb_cmap);
box on;
font_size = 20;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
title('Cramer-Rao Bound - Cartesian')
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$x$','$y$','$z$','$c$'})
yticklabels({'$x$','$y$','$z$','$c$'})
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5,'fontsize',font_size)
%%
% True Spherical
Delta_I_Cart = Delta_I*Conversion*Conversion_c2s;
Fisher_True = (1/sigma_1^2)*(Delta_I_Cart'*Delta_I_Cart);
CRB_True2 = Fisher_True^-1;
figure(fit+4);
imagesc(Fisher_True,fi_cmap);
box on;
font_size = 20;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
title('Fisher Information Matrix - Spherical')
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$\theta$','$\varphi$','$\rho$','$c$'})
yticklabels({'$\theta$','$\varphi$','$\rho$','$c$'})
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5)
figure(fit+5);
imagesc(CRB_True2,crb_cmap);
box on;
font_size = 20;
set(gca,'Color',[0.2 0.2 0.2],'FontSize',font_size-4,'LineWidth',1.5)
title('Cramer-Rao Bound - Spherical')
set(gca,'TickLabelInterpreter','Latex','GridColor',[1 1 1],'GridAlpha',0.5)
% set(gca,'TickLabel',{'\rho'})
xticks([1 2 3 4])
yticks([1 2 3 4])
xticklabels({'$\theta$','$\varphi$','$\rho$','$c$'})
yticklabels({'$\theta$','$\varphi$','$\rho$','$c$'})
axis equal square tight
hcb = colorbar;
set(hcb,'ticklabelinterpreter','latex','LineWidth',1.5,'fontsize',font_size)
function [R, dR_dTheta, dR_dPsi, dR_dRho, H, H1, dH_dTheta, dH1_dTheta, dH_dPsi, SC, dC_dx, dC_dy, dC_dz] = compute_stuff(rho, theta, psi, a, b, f, h, N)
S = 1/(1+(tan(theta))^2+(tan(psi))^2)^(1/2);
R = (rho^2 + 2*rho*(a*tan(theta)+b+h*tan(psi))*S + a.^2+b.^2+h^2).^-1;
dR_dTheta = -R.^2 *2*rho .*( (S.*a.*(sec(theta))^2 - (b+a*tan(theta)+h*tan(psi))*tan(theta)*(sec(theta))^2*S^3) );
dR_dPsi = -R.^2 *2*rho .*( (S.*h.*(sec(psi))^2 - (b+a*tan(theta)+h*tan(psi))*tan(psi)*(sec(psi))^2*S^3) );
dR_dRho = -R.^2 .* (2*rho + 2*(a*tan(theta)+b+h*(tan(psi)))*S);
% Create cartesian directly
x = rho.*S;
y = tan(theta).*x;
z = tan(psi).*x;
SC = ((x+b).^2 + (y+a).^2 + (z+h).^2).^(-1);
dC_dx = -2*(x+b).*SC.^2;
dC_dy = -2*(y+a).*SC.^2;
dC_dz = -2*(z+h).*SC.^2;
H = 1/2 * (max(min(b+f,(a+f)*cot(theta)),max(b-f,h*cot(psi)))).^2 * tan(theta) - max(min(b+f,(a+f)*cot(theta)),max(b-f,h*cot(psi))).*(a-f) ...
- 1/2 * (max(b-f, max(h*cot(psi), (a-f)*cot(theta)))).^2 * tan(theta) ...
+ max(b-f, max(h*cot(psi), (a-f)*cot(theta))).*(a-f) + 2*f*(b+f) ...
- 2*f*max(min(b+f,(a+f)*cot(theta)),max(b-f,h*cot(psi)));
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if h*cot(psi) > b0+f || (a0-f)*cot(theta) > b0+f
H(i) = 0;
end
end
H1 = 1/2 * (max(min(b+f,(a+f)*cot(theta)),b-f)).^2 * tan(theta) - max(min(b+f,(a+f)*cot(theta)),b-f).*(a-f) ...
- 1/2 * (max(b-f, (a-f)*cot(theta))).^2 * tan(theta) ...
+ max(b-f, (a-f)*cot(theta)).*(a-f) + 2*f*(b+f) ...
- 2*f*max(min(b+f,(a+f)*cot(theta)),b-f);
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if (a0-f)*cot(theta) > b0+f
H1(i) = 0;
end
end
dH_dTheta = zeros(1,N^2);
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if (a0+f)*cot(theta) <= b0-f || (a0-f)*cot(theta) >= b0+f || h*cot(psi) >= b0+f || h*cot(psi) > (a0+f)*cot(psi)
dH_dTheta(i) = 0;
continue
end
if b0+f > (a0+f)*cot(theta)
if (a0-f)*cot(theta) > max(b0-f,h*cot(psi))
dH_dTheta(i) = 0.5*(a0+f)^2*(csc(theta))^2 - 0.5*(a0-f)^2*(csc(theta))^2;
else
dH_dTheta(i) = 0.5*(a0+f)^2*(csc(theta))^2 - 0.5*(max(b0-f,h*cot(psi)))^2*(sec(theta))^2;
end
else
if (a0-f)*cot(theta) > max(b0-f,h*cot(psi))
dH_dTheta(i) = 0.5*(b0+f)^2*(sec(theta))^2 - 0.5*(a0-f)^2*(csc(theta))^2;
else
dH_dTheta(i) = 0.5*(b0+f)^2*(sec(theta))^2 - 0.5*(max(b0-f,h*cot(psi)))^2*(sec(theta))^2;
end
end
end
dH_dTheta = -(1/2)*(min(b+f,(a+f)*cot(theta))).^2 *(sec(theta))^2+(1/2)*(max(max(b-f,h*cot(psi)),(a-f)*cot(theta))).^2 *(sec(theta))^2;
dH_dTheta = (1/2)*(sec(theta))^2 * ( (max(max(b-f,h*cot(psi)),(a-f)*cot(theta))).^2 - (min(max(b+f,h*cot(psi)),(a+f)*cot(theta))).^2 );
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if (a0+f)*cot(theta) <= max(b0-f,h*cot(psi)) || (a0-f)*cot(theta) >= max(b0+f,h*cot(psi))
dH_dTheta(i) = 0;
end
end
dH1_dTheta = zeros(1,N^2);
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if (a0+f)*cot(theta) <= b0-f || (a0-f)*cot(theta) >= b0+f
dH1_dTheta(i) = 0;
continue
end
if b0+f > (a0+f)*cot(theta)
if (a0-f)*cot(theta) > b0-f
dH1_dTheta(i) = 0.5*(a0+f)^2*(csc(theta))^2 - 0.5*(a0-f)^2*(csc(theta))^2;
else
dH1_dTheta(i) = 0.5*(a0+f)^2*(csc(theta))^2 - 0.5*(b0-f)^2*(sec(theta))^2;
end
else
if (a0-f)*cot(theta) > b0-f
dH1_dTheta(i) = 0.5*(b0+f)^2*(sec(theta))^2 - 0.5*(a0-f)^2*(csc(theta))^2;
else
dH1_dTheta(i) = 0.5*(b0+f)^2*(sec(theta))^2 - 0.5*(b0-f)^2*(sec(theta))^2;
end
end
end
dH_dPsi = h*(csc(psi))^2 * (min(a-f, h*cot(psi)*tan(theta)) - min(a+f, h*cot(psi)*tan(theta)));
for i=1:length(a(:))
a0 = a(i);
b0 = b(i);
if b0-f > h*cot(psi) || h*cot(psi) > b0+f
dH_dPsi(i) = 0;
end
end
R = reshape(R, N, N);
dR_dTheta = reshape(dR_dTheta, N, N);
dR_dPsi = reshape(dR_dPsi, N, N);
dR_dRho = reshape(dR_dRho, N, N);
H = reshape(H, N, N);
H1 = reshape(H1, N, N);
dH_dTheta = reshape(dH_dTheta, N, N);
dH1_dTheta = reshape(dH1_dTheta, N, N);
dH_dPsi = reshape(dH_dPsi, N, N);
SC = reshape(SC,N,N);
dC_dx = reshape(dC_dx,N,N);
dC_dy = reshape(dC_dy,N,N);
dC_dz = reshape(dC_dz,N,N);
end