-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSRastreator 1.0.1 English version Github.py
702 lines (467 loc) · 19.3 KB
/
SSRastreator 1.0.1 English version Github.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# -*- coding: utf-8 -*-
"""
Created in June 2021
SHORT SEQUENCE RASTREATOR v.1.0.1
@author: Francisco Javier Bielsa González || Graduate in Biotechnology,
Master in Molecular and Cell Biology.
SSRastreator works with Allele Data from SSR sequencing and can be used to study genetic diversity.
SSRastreator also fastens workflow between genetic structure and diversity analysis softwares such as
STRUCTURE 2.3.4 (Stanford University) or DARwin (CIRAD) preparing input files to both softwares with
your original data sheet.
This code was made during the development of my Master's Thesis and was tested with Genomic Data from Pyrus Communis L.
Latest Version: July 28th 2021
"""
import pandas as pd
import numpy as np
import itertools
def convert_to_list(x):
if x == '//' or x == '/' or isinstance(x, float):
return []
else:
return [int(i) for i in list(filter(None, x.split('/')))]
def possible_Alleles(Column):
total = set()
for accession in Column:
total = total | set(accession)
return sorted(list(total))
def Count_hits(dataframe, new_dataframe, Locus, Alleles):
for allele in Alleles:
new_Column = Locus + '.' + str(allele)
Column = []
# print(new_Column)
for accession in dataframe[Locus]:
Column.append(accession.count(allele))
new_dataframe[new_Column] = Column
return new_dataframe
def Relative_frequencies(TableF, Locus, Alleles):
for allele in Alleles:
freq = PoolOfAlleles.count(allele)
relfreq = freq/len(PoolOfAlleles)
print(Locus,allele,relfreq)
allele = str(allele)
RelFreq = pd.Series([Locus, allele, relfreq], index = TableF.columns)
TableF = TableF.append(RelFreq, ignore_index=True).copy()
return TableF
def convert_to_list_het(x):
if x == '//' or x == '/' or x =='///' or x =='////' or isinstance(x, float):
return ['nan']
else:
return [int(i) for i in list(filter(None, x.split('/')))]
def Observed_Heterozigosity(HObs, HetM):
Heterozygotes = 0
Accessions = HetM[Locus].count()
for accession in HetM[Locus]:
print(accession)
if accession == ['nan']:
continue
if accession[0] != accession[1]:
Heterozygotes += 1
print(Heterozygotes)
HO = Heterozygotes/Accessions
Obser = pd.Series([HO,Locus], index = HObs.columns)
HObs = HObs.append(Obser, ignore_index = True).copy()
return(HObs)
def Expected_Heterozigosity(HJ,HetM):
nume = 0
for allele in Alleles:
print(allele)
freq = PoolOfAlleles.count(allele)
relfreq = freq/len(PoolOfAlleles)
pi2 = pow(relfreq, 2)
nume = nume + pi2
Hj = 1 - (nume)
Expected = pd.Series([Hj,Locus], index = HJ.columns)
HJ = HJ.append(Expected, ignore_index = True).copy()
return(HJ)
def Unique_Alleles(UniqueAlleles,Locus,Alleles):
for allele in Alleles:
if PoolOfAlleles.count(allele) == 1:
UniqueAllele = pd.Series([allele, Locus], index = UniqueAlleles.columns)
UniqueAlleles = UniqueAlleles.append(UniqueAllele, ignore_index = True)
print(allele, 'is an unique allele for Locus', Locus)
return(UniqueAlleles)
def Number_of_Alleles(NumberOfAlleles, Locus, Alleles):
NuAl = pd.Series([len(Alleles),Locus], index = NumberOfAlleles.columns)
NumberOfAlleles = NumberOfAlleles.append(NuAl, ignore_index = True)
return (NumberOfAlleles)
"""
Insert path of the file you want to work with - f.e. 'C:/Users/Admin/Documents/SSR/Dataframe1.csv'
This program works with CSV-UTF8 encoded dataframes. Header is expected in the first row.
Rows contain sample data, each row represents an accession.
The first columns of your dataframe should contain important information such as name, origin or ploidy.
This program supports diploid and triploid SSR analysis.
"""
path = 'C:/Users/Admin/Documents/SSR/Dataframe1.csv'
#Creation of working dataframe and another dataframe that will result into DARwin working Matrix.
#loci: Set of all locus. Columns containing information different from genomic data must be included
# in the second part of the code line 'set(['Ord', 'Nclon', 'AccessionName', 'Origin', 'Ploidy'])'.
df=pd.read_csv(path , sep=';',header=0)
loci = set(df.columns.values) - set(['Ord', 'Nclon', 'Name', 'Origin', 'Ploidy'])
new_df = df[['Ord', 'Nclon', 'Name', 'Origin', 'Ploidy']].copy()
#Accessions summary
print('Number of Accessions is', len(df),'\nNumber of loci is', len(loci))
Diploids = 0
Triploids = 0
for x in df['Ploidy']:
if x == 2:
Diploids +=1
else:
Triploids +=1
print('Diploid percentage is', Diploids/len(df))
print('Triploid percentage is', Triploids/len(df))
NDiploids = ('Diploid percentage is', Diploids/len(df))
NTriploids = ('Triploid percentage is', Triploids/len(df))
"""
CREATION OF HITS MATRIX / DARwin MATRIX
Here we are creating a 'Hits' dataframe (Accession vs number of times an allele appears in a given locus)
This matrix can be used in DARwin software and can be saved to the path we are working on.
Be careful with DARwin parameters, because the matrix may contain values different from 1 or 0 and
may give errors in DARwin. This can happen because homozygotes/triploids give 2 hits in some alleles.
In order to make the matrix work in DARwin you should replace all values=2 to values=1.
"""
for Locus in loci:
#print('Processing Locus', Locus, '...')
df[Locus] = df[Locus].apply(lambda x: convert_to_list(x))
Alleles = possible_Alleles(df[Locus])
new_df = Count_hits(df, new_df, Locus, Alleles)
ExcelHits = new_df
ExcelHits.to_csv('Darwin.csv', index = False)
"""
CREATION OF ALLELIC FREQUENCY TABLE
Outputs: 'TableF.csv' contains relative frequencies of alleles.
'UniqueAlleles.csv' containes unique alleles in a given locus.
'NumberOfAlleles.csv' contains number of alleles per locus.
'RareAlleles' contains rare alleles found at a given locus.
"""
Tf = ['Locus', 'allele', 'Frequency']
TableF = pd.DataFrame([], columns = Tf)
UniqueAlleles = pd.DataFrame([], columns = ['Unique Allele', 'Locus'])
NumberOfAlleles = pd.DataFrame([], columns = ['Number of Alleles','Locus'])
for Locus in loci:
AList = df[Locus].values.tolist()
PoolOfAlleles = list(itertools.chain(*AList))
Alleles = possible_Alleles(df[Locus])
UniqueAlleles = Unique_Alleles(UniqueAlleles,Locus,Alleles)
TableF = Relative_frequencies(TableF,Locus, Alleles)
TableF.to_csv('TableF.csv', index = False)
UniqueAlleles.to_csv('UniqueAlleles.csv', index = False)
NumberOfAlleles = Number_of_Alleles(NumberOfAlleles, Locus, Alleles)
NumberOfAlleles.to_csv('NumberOfAlleles.csv', index = False)
RareAlleles = TableF[TableF['Frequency'] < 0.05]
RareAlleles = RareAlleles.reset_index(drop=True)
RareAlleles.to_csv('RareAlleles.csv', index = False)
SummaryRareAlleles = pd.DataFrame([], columns = ['Locus', 'N Alleles'])
CountLocusRare = list(RareAlleles['Locus'])
for locus in loci:
nrare = CountLocusRare.count(locus)
NRARE = pd.Series([locus,nrare], index = SummaryRareAlleles.columns)
SummaryRareAlleles = SummaryRareAlleles.append(NRARE, ignore_index =True)
SummaryRareAlleles.to_csv('SummaryRareAllelesTotal.csv', index = False)
"""
DISCRIMINANT POWER OF EACH Locus - PD = 1- Epi^2 (Genotypes)
Output: 'PD.csv' Contains DP of each locus.
"""
df=pd.read_csv(path , sep=';',header=0)
loci = set(df.columns.values) - set(['Ord', 'Nclon', 'AccessionName', 'Origin', 'Ploidy'])
DiscriminantPower = pd.DataFrame([])
for Locus in loci:
Lista = df[Locus].values.tolist()
nume = 0
Genotipos = set(Lista)
for genotipo in Genotipos:
freq = Lista.count(genotipo)
RelFreq = freq/len(Lista)
pg2 = pow(RelFreq, 2)
nume = nume + pg2
PD = 1 - (nume)
serie = pd.Series([Locus,PD])
serie = pd.DataFrame([serie])
DiscriminantPower = pd.concat([serie,DiscriminantPower], ignore_index=True)
DiscriminantPower.columns = ['Locus', 'PD']
DiscriminantPower.to_csv('PD.csv', index = False)
"""
OBSERVED AND EXPECTED HETEROZYGOSITY
Outputs: 'HObs.csv' and 'HJ.csv'
"""
HetM = pd.read_csv(path , sep=';',header=0)
loci = set(HetM.columns.values) - set(['Ord', 'Nclon', 'Origin', 'Ploidy', 'Name'])
#Observed Heterozygosity
Heter = ['Hobs','Locus']
HObs = pd.DataFrame([], columns = Heter)
for Locus in loci:
HetM[Locus] = HetM[Locus].apply(lambda x: convert_to_list_het(x))
for Locus in loci:
HObs = Observed_Heterozigosity(HObs, HetM)
print('Observed Heterozigosity is \n', HObs)
HObs.to_csv('HObs.csv', encoding = 'utf-8')
#Expected Heterozygosity
HetM = pd.read_csv(path , sep=';',header=0)
loci = set(HetM.columns.values) - set(['Ord', 'Nclon', 'Origin', 'Ploidy', 'Name'])
Expected = ['Hj', 'Locus']
HJ = pd.DataFrame([], columns = Expected)
for Locus in loci:
HetM[Locus] = HetM[Locus].apply(lambda x: convert_to_list(x))
Lista = HetM[Locus].values.tolist()
PoolOfAlleles = list(itertools.chain(*Lista))
Alleles = possible_Alleles(HetM[Locus])
HJ = Expected_Heterozigosity(HJ,HetM)
print('Expected Heterozigosity is \n', HJ)
HJ.to_csv('HJ.csv', encoding = 'utf-8')
HObsTotal = sum(HObs['Hobs'].values)/14
HJTotal = sum(HJ['Hj'].values)/14
"""
Wright F-statistics
F value || F = 1- (Hobs/Hesp)
This function considers every individual as a part of an unique population
"""
F = 1 - (HObsTotal/HJTotal)
print('Fit value is', F)
if F > 0.2:
print('Slight differentiation')
if F > 0.15 and F < 0.2:
print('Strong differentiation')
"""
#Nule alleles (r=(He-Ho)/(1+He))
"""
DfEst = pd.DataFrame([HJ['Locus'],HJ['Hj'],HObs['Hobs']])
DfEst = DfEst.transpose()
DfEst['Na'] = (DfEst['Hj']-DfEst['Hobs'])/(1+DfEst['Hj'])
DfEst.to_csv('DfEst.csv', encoding = 'utf-8')
"""
Both Fvalue and Nule alleles function require further revision. Use under your own risk.
"""
"""
SUMMARY TABLE
#'Results.csv'.
"""
Summary = pd.DataFrame([])
PD_sorted = DiscriminantPower.sort_values(by = ['Locus'], inplace = False, ascending = True)
PD_sorted = PD_sorted.reset_index()
PD_sorted = PD_sorted.drop('index', axis =1 )
DfEst_sorted = DfEst.sort_values(by = ['Locus'],inplace = False, ascending = True)
NumberOfAlleles_sorted = NumberOfAlleles.sort_values(by = ['Locus'], inplace = False,ascending = True)
NumberOfAlleles_sorted = NumberOfAlleles_sorted.reset_index()
NumberOfAlleles_sorted = NumberOfAlleles_sorted.drop('index', axis = 1)
Summary = DfEst_sorted
Summary = Summary.reset_index()
Summary = Summary.drop('index', axis = 1)
Summary['PD'] = PD_sorted['PD']
Summary['Number of Alleles'] = NumberOfAlleles_sorted['Number of Alleles']
Summary['Ploidy'] = ''
Summary['Ploidy'][0]=NDiploids
Summary['Ploidy'][1]=NTriploids
Summary['Information'] = ''
Summary['Information'][0] = ('Number of Accessions is', len(df),'Number of loci is' ,len(loci))
Summary.to_csv('ResultsPythonUniquegenotypes.csv', encoding = 'utf-8')
print(Summary)
""""
DUPLICATES TABLE
Output: 'Duplicates.csv'
In 'col[6:(len(new_df.columns))]' number 6 need to be checked and replaced
with the last position of information columns that you have in your dataframe
"""
col = new_df.columns
sel = col[6:(len(new_df.columns))]
Duplicates = new_df[new_df.duplicated(sel, keep = False)]
sorti = list(sel)
Duplicates = Duplicates.sort_values(by = sorti)
Duplicates.to_csv('Duplicates.csv', encoding = 'utf-8')
"""
NEW DATAFRAME WITH SELECTION CRITERIA: DIPLOID GENOTYPES
Create a new dataframe containing your desire data.
"""
DiploidDf = df[df['Ploidy'] == 2]
print(DiploidDf)
DiploidDf.to_csv('DiploidDf.csv', encoding ='utf-8')
"""
NEW DATAFRAME WITH SELECTION CRITERIA: REFERENCE AND LOCAL ACCESSIONS
"""
#Reference and Local cultivars
dfRef = df[df.Origin != 'LOCAL']
dfLocal = df[(df.Origin != 'COLECTION') & (df.Origin != 'REFERENCE')]
"""
TRIALLELIC LOCI SEARCH
"""
TriploidDATA = pd.DataFrame([])
"""Delete Diploids manually assigned in order to check only Triploids and their triallelic loci"""
for i in range(len(df)):
if df['Ploidy'].loc[i] == 2:
df = df.drop(i)
df=df.reset_index()
df=df.drop('index', axis =1)
for i in range(len(df)):
for Locus in loci:
if len(df[Locus].loc[i]) == 3:
AC = [df['Name'][i], Locus]
TriploidDATA = TriploidDATA.append(pd.Series(AC, name = 'Triploids'))
TriploidDATA = TriploidDATA.rename(columns={0:'Name',1:'Locus'})
TriploidDATA['Hits'] = ''
Index = 0
for Accession in TriploidDATA['Name']:
TriAlleles = list(TriploidDATA['Name']).count(Accession)
TriploidDATA['Hits'][Index]= TriAlleles
Index +=1
LocusTriAlleles = pd.DataFrame([])
for locus in loci:
TriLocus = list(TriploidDATA['Locus']).count(locus)
SerieTriLocus = pd.Series([locus,TriLocus], name = 'Serielocus')
LocusTriAlleles = LocusTriAlleles.append(SerieTriLocus, ignore_index= True)
LocusTriAlleles = LocusTriAlleles.rename(columns = {0 :'Locus', 1:'Nº Triploid Accessions'})
AccYNLocus = TriploidDATA.drop('Locus', axis = 1)
AccYNLocus = AccYNLocus.drop_duplicates()
LocusNumber = list(AccYNLocus['Hits'])
LocusNumberData = pd.DataFrame([])
for i in LocusNumber:
LocusCount = LocusNumber.count(i)
Summary = pd.Series([i,LocusCount], name = 'LocusCount')
LocusNumberData = LocusNumberData.append(Summary, ignore_index = True)
LocusNumberData = LocusNumberData.rename(columns = {0:'Triallelic Locus', 1:'N Accessions'})
LocusNumberData = LocusNumberData.drop_duplicates()
AccYNLocus = AccYNLocus.reset_index()
AccYNLocus = AccYNLocus.drop('index', axis = 1)
LocusNumberData = LocusNumberData.reset_index()
LocusNumberData = LocusNumberData.drop('index', axis = 1)
TriAllelesLocusSummary = AccYNLocus
TriAllelesLocusSummary['N Locus with 3 alleles'] = LocusNumberData[['Triallelic Locus']].copy()
TriAllelesLocusSummary['N Accessions'] = LocusNumberData[['N Accessions']].copy()
TriAllelesLocusSummary['Locus'] = LocusTriAlleles[['Locus']].copy()
TriAllelesLocusSummary['Nº Triploid Accessions'] = LocusTriAlleles[['Nº Triploid Accessions']].copy()
TriAllelesLocusSummary.to_csv('Triallelic Loci Summary.csv', encoding = 'utf-8')
"""
NEW DATAFRAMES WITH SELECTION CRITERIA: STRUCTURE
Create a new dataframe containing each STRUCTURE GROUP in order to asses genetic diversity present in them.
WARNING: Structure analysis and group assignment must be manullay done. This code works with datasets containing
every accession, assigned groups and qI. Be careful with lines such as df2.rename(columns = {'Unnamed: 2' : 'Name'})
or pd.DataFrame(df2.iloc[:,[2,6]]), both 'Unnamed:2' and range [2,6] can change depending on your dataset.
"""
#Structure Groups
df3 = df2[df2.Group == 'G2']
df4 = df2[df2.Group == 'G3']
df2 = df2[df2.Group == 'G1']
df2 = df2.rename(columns = {'Unnamed: 2' : 'Name'})
df3 = df3.rename(columns = {'Unnamed: 2' : 'Name'})
df4 = df4.rename(columns = {'Unnamed: 2' : 'Name'})
df1['Name'] = df1['Name'].str.strip()
df2['Name'] = df2['Name'].str.strip()
df3['Name'] = df3['Name'].str.strip()
df4['Name'] = df4['Name'].str.strip()
G1 = list(set(df2['Name']))
G2 = list(set(df3['Name']))
G3 = list(set(df4['Name']))
Group1 = df1[df1['Name'].isin(G1)]
Group2 = df1[df1['Name'].isin(G2)]
Group3 = df1[df1['Name'].isin(G3)]
Group1.to_csv('Group1.csv', encoding = 'utf-8')
Group2.to_csv('Group2.csv', encoding = 'utf-8')
Group3.to_csv('Group3.csv', encoding = 'utf-8')
df2 = pd.DataFrame(df2.iloc[:,[2,6]])
df2 = df2.reset_index()
df2 = df2.drop('index', axis = 1)
df3 = pd.DataFrame(df3.iloc[:,[2,6]])
df3 = df3.reset_index()
df3 = df3.drop('index', axis = 1)
df4 = pd.DataFrame(df4.iloc[:,[2,6]])
df4 = df4.reset_index()
df4 = df4.drop('index', axis = 1)
TRGroup = df4
TRGroup['Unnamed: 6'] = TRGroup['Unnamed: 6'].str.replace(',','.')
TRGroup['Unnamed: 6'] = TRGroup['Unnamed: 6'].astype(float)
"""
Number of reference accessions strongly assigned to each Structure Group.
"""
ReferenceList = list(dfRef['Name'])
CountRefQ = 0
for i in range(len(TRGroup)):
if TRGroup['Name'].loc[i] in ReferenceList and TRGroup['Unnamed: 6'].loc[i] > 0.8:
CountRefQ +=1
print('Number of reference accessions with Q > 0,8 is', CountRefQ )
""""
STRUCTURE FILE
Insert file path of your unique genotypes matrix
Change Information columns in '{'Ord', 'Nclon', 'AccessionName', 'Origin', 'Ploidy'}'
and St = Stru.drop(['Ord', 'Nclon', 'Origin', 'Ploidy'], axis = 1)
Execute and enjoy saving 2 hours of excel work.
Output: 'Structure.csv'
"""
path = 'C:/Users/Admin/Documents/SSR/Dataframe1.csv'
Stru = pd.read_csv(path, sep=';', header=0)
loci = set(Stru.columns.values) - {'Ord', 'Nclon', 'Name', 'Origin', 'Ploidy'}
for Locus in loci:
Stru[Locus]= Stru[Locus].apply(lambda x: convert_to_list(x))
#Convert to structure format
for i in range(len(Stru)):
for Locus in loci:
while len(Stru[Locus].loc[i]) < 3:
Stru[Locus].loc[i].append('')
St = Stru.drop(['Ord', 'Nclon', 'Origin', 'Ploidy'], axis = 1)
St = St.apply(pd.Series.explode)
St.replace('', np.nan, inplace= True)
St.replace(np.nan,-9, inplace = True)
St.to_csv('StructureDiploidescomoTri.csv', encoding = 'UTF-8')
""""
SPAGeDi File
Insert your genotype matrix file path. Does not need to contain only unique genotypes.
Change Information columns in 'set(['Ord', 'Nclon', 'Name', 'Origin', 'Ploidy'])'
Output : 'Spagedi.csv'
""""
path = 'C:/Users/Admin/Documents/SSR/Dataframe1.csv'
df=pd.read_csv(path, sep=';',header=0)
loci = set(df.columns.values) - set(['Ord', 'Nclon', 'Name', 'Origin', 'Ploidy'])
for Locus in loci:
df = df.join(df[Locus].str.split('/',expand = True).add_prefix(Locus).fillna(np.nan))
df = df.drop(columns = Locus)
newset = set(df.columns.values) - set(['Ord', 'Nclon', 'Name', 'Origin', 'Ploidy'])
for col in newset:
df[col] = df[col].apply(lambda x: '{0:0>3}'.format(x))
for Locus in loci:
df[Locus] = df[Locus + '0'] + df[Locus + '1'] + df[Locus + '2']
del (df[Locus + '0'], df[Locus + '1'], df[Locus + '2'])
Spagedi = df
Spagedi.to_csv('Spagedi.csv', encoding = 'UTF-8')
'''
Amova file modification overwriting spagedi file
'''
import pandas as pd
path1= 'C:/Users/Admin/Documents/SSR/Spagedifile.csv'
df1 = pd.read_csv(path1, sep=';', header=0)
loci = set(df1.columns.values) - {'ACC','POP'}
path2= 'C:/Users/Admin/Documents/SSR/STRUCTUREG1.csv'
df2 = pd.read_csv(path2, sep=';', header=0)
path3= 'C:/Users/Admin/Documents/SSR/STRUCTUREG2.csv'
df3 = pd.read_csv(path3, sep=';', header=0)
path4= 'C:/Users/Admin/Documents/SSR/STRUCTUREG3.csv'
df4 = pd.read_csv(path4, sep=';', header=0)
df1['ACC'] = df1['ACC'].str.strip()
df2['Name'] = df2['Name'].str.strip()
df3['Name'] = df3['Name'].str.strip()
df4['Name'] = df4['Name'].str.strip()
G1 = list(set(df2['Name']))
G2 = list(set(df3['Name']))
G3 = list(set(df4['Name']))
a=0
b=0
c=0
for i in df1['ACC']:
if i in G1:
a +=1
elif i in G2:
b+=1
elif i in G3:
c +=1
else:
print(i)
print(a,b,c)
errors = []
for i in range(len(df1)):
if df1['ACC'].loc[i] in G1:
df1.loc[i,'POP'] = '1'
elif df1['ACC'].loc[i] in G2:
df1.loc[i,'POP'] = '2'
elif df1['ACC'].loc[i] in G3:
df1.loc[i,'POP'] = '3'
else:
errors.append(df1['ACC'].loc[i])
print(df1['ACC'].loc[i])
for locus in loci:
df1[locus] = df1[locus].replace(0,'000000000')
df1.to_csv('SpagediFilewithGroups.csv', encoding = 'Utf-8')