-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
267 lines (189 loc) · 8.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import re
import time
import pandas as pd
import numpy as np
class File(object):
def __init__(self, directory):
self.dir = directory
class sourceFile(File):
def __init__(self, directory):
super().__init__(directory)
self.data = self._read_data()
self.vars = self._getAvailableVariables()
self.cultivars = self.data["VARIEDADE"].unique()
self.trats = self.data["TRATAMENTO"].unique()
def _read_data(self):
try:
data = pd.read_csv(self.dir)
except:
data = pd.read_excel(self.dir)
return self._drop_na_columns(data)
def _drop_na_columns(self, data):
to_drop = [to_drop[0] for to_drop in enumerate(data.columns)
if str(to_drop[1]).startswith("Unnamed")]
return data.drop(data.columns[to_drop], axis=1)
def _getAvailableVariables(self):
return [var for var in self.data.columns]
def _round_numbers(self, values, var):
values = np.nan_to_num(values, nan = -99)
if values.max() > 10:
if var.split()[0] == "MASSA":
values = [self._convert_value(value) for value in values]
return [int(value) for value in values]
elif values.max() < 10 and var == "GSTD":
return [int(value) for value in values]
else:
values = [round(value, 2) for value in values]
return [self._handle_float(value) for value in values]
def _convert_value(self, value):
if value == -99:
return value
else:
# 10000 cm2 = 1 ha ; 0.72 cm2 = one plant area
# '/1000' to convert from cm to kg
return (value * (10000 / 0.72)) / 1000
def _handle_float(self, val):
while len(str(val)) < 4:
val = str(val) + "0"
return str(val)
def choose_variables(self, var_list, cultivar):
self.choosed_vars = [var for var in var_list if var in self.vars]
self.process_vars(cultivar)
def process_vars(self, cultivar):
self.values = {i: {var: self.get_var_values(var, cultivar, trat)
for var in self.choosed_vars}
for i, trat in enumerate(self.trats, start = 1)}
def get_var_values(self, var, cultivar, trat):
avg = self.data.loc[(self.data["VARIEDADE"] == cultivar) &
(self.data["TRATAMENTO"] == trat)].groupby(["DATA DA AVALIAÇÃO", "DAP"]).mean()
var_index = next(index[0] for index in enumerate(avg)
if var == index[1])
return self.process_values(avg.iloc[:, var_index], var)
def process_values(self, serie, var):
values = self._round_numbers(serie.to_numpy(), var)
index = [(i.date().strftime("%y%j"), dap) for i, dap in serie.index]
return [i + (v, ) for i, v in zip(index, values)]
def write_file(self, target):
trat_sizes = self._size_table()
with open(f"C:/DSSAT47/Cassava/{target.filename}", mode = "w") as f:
f.write("*EXP. DATA (T): \n \n") # File header
f.write(self._write_description(target)) # Comments (File Description)
self._write_header(f, target)
f.write("\n")
for i, trat in enumerate(self.trats, start = 1):
self._write_table(f, i, trat_sizes[i - 1])
def _write_description(self, target):
trat_text = "".join([f'! {trat_n} = {treatment} \n'
for trat_n, treatment
in zip(self.values.keys(), self.trats)])
vars_text = "".join([f'! {var_code} = {var_name} \n'
for var_code, var_name
in zip(target.variables[2:], self.choosed_vars)]) # '[2:]' to avoid 'DATE' and 'DAP'
return f'! Treatments \n{trat_text}!\n! Variables \n{vars_text} \n'
def _write_header(self, file, target):
file.write("@TRNO ")
for n in target.variables:
file.write(self._handle_var_spaces(n))
def _handle_var_spaces(self, var):
while len(var) < 6: # Space between two variables
var = " " + var
return var
def _write_table(self, file, trat, size):
for l in range(size):
file.write(" ")
file.write(f'{trat}')
values = [v[l] for v in self.values[trat].values()]
for var_value in values:
try:
if var_value[0] == date:
if var_value[1] == dap:
pass
except:
date, dap, val = [*var_value]
file.write(self._handle_var_spaces(str(date)))
file.write(self._handle_var_spaces(str(dap)))
date, dap, val = [*var_value]
file.write(self._handle_var_spaces(str(val)))
del date, dap, val
file.write("\n")
def _size_table(self):
size = []
for values in self.values.values():
lengths = [len(v) for v in values.values()]
size.append(max(lengths))
return size
class targetFile(File):
def __init__(self, filename):
self.dir = os.scandir("C:/DSSAT47/Cassava/")
try:
# if file already exist
self.file = next(file for file in self.dir if file.name == filename)
self.filename = self.file.name
except:
# if file do not exist
self.filename = self._check_filename(filename)
self.file = self._create_file()
self.variables = ['DATE', 'DAP']
def _check_filename(self, filename):
if re.search("(CST)$", filename.split(".")[1]):
if len(filename.split(".")[0]) == 8:
return filename
else:
raise ValueError("file name must have 8 characters")
else:
raise ValueError("file extension must be '.CST'")
def _create_file(self):
with open(f'C:/DSSAT47/Cassava/{self.filename}', mode = "w"):
print(f' \n {self.filename} created on "C:/DSSAT47/Cassava/"')
self.dir = os.scandir("C:/DSSAT47/Cassava/")
return next(file for file in self.dir if file.name == self.filename)
def read_file(self):
self.df = pd.DataFrame(columns = ["TRNO", "DATE"]) # for final data
self.vars = {} # for var specs (line space)
self.vals = {} # for var values
with open(self.file.path) as f:
for i, l in enumerate(f.readlines()):
if l[0] == '!': # skip comments
continue
if l[0] == '@': # start of section
self._read_header(l[1:])
continue
if self.vars:
if l.strip() == "":
self.vars = {}
self.df = self._insert_data_df()
self.vals = {}
continue
self._read_values(l)
self.df = self._insert_data_df()
return self.df
def _read_header(self, line):
self.vars = {var: self._get_specs(var, line) for var in line.split()}
self.vals = {key: [] for key in self.vars.keys()}
def _insert_data_df(self):
if not self.vals:
return self.df
data = (pd.merge(self.df,
right = pd.DataFrame(self.vals),
how = "outer",
on = ["TRNO", "DATE"])
.sort_values(by = ["TRNO", "DATE"])
.replace("-99", "")
.replace(",", ".")
)
return data[data.TRNO != "\x1a"]
def _get_specs(self, var, line):
start = re.search(var, line).start()
end = re.search(var, line).end()
if var == "TRNO":
return (start, end + 1)
else:
return (start - 1, end)
def _read_values(self, line):
for k, v in self.vars.items():
value = line[v[0]:(v[1] + 1)].strip()
self.vals[k].append(value)
def set_variables(self, var_list):
self.variables.extend([var for var in var_list
if var not in self.variables])