-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
73 lines (61 loc) · 2.19 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
import cv2
import torch
import numpy as np
import ctypes
import os.path
import time
from face_detect.detect_imgs import get_face_boundingbox
from face_landmark.GetLandmark import get_face_landmark
from face_feature.GetFeature import get_face_feature
from face_pose.GetPose import get_face_pose
def GetImageInfo(image, faceMaxCount):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
### Detection
start_time = time.time() * 1000
boxes, scores = get_face_boundingbox(image)
boxes = boxes[:faceMaxCount]
scores = scores[:faceMaxCount]
count = len(boxes)
bboxes = []
bscores = []
for idx in range(count):
bboxes.append(boxes[idx].data.numpy())
bscores.append(scores[idx].data.numpy())
### Landmark
start_time = time.time() * 1000
landmarks = [] ### np.zeros((count, 136), dtype=np.float32)
for idx in range(count):
landmarks.append(get_face_landmark(gray_image, boxes[idx]).data.numpy())
### Pose
poses = []
for idx in range(count):
poses.append(get_face_pose(boxes[idx], landmarks[idx]))
### Feature
start_time = time.time() * 1000
features = []
alignimgs = []
for idx in range(count):
alignimg, feature = get_face_feature(image, landmarks[idx])
features.append(feature)
alignimgs.append(alignimg)
# print("Feature extraction time = %s ms" % (time.time() * 1000 - start_time))
return count, bboxes, bscores, landmarks, alignimgs, features
def get_similarity(feat1, feat2):
return (np.sum(feat1 * feat2) + 1) * 50
if __name__ == '__main__':
threshold = 75
test_directory = 'test'
efn = os.getcwd() + "/test/1.jpg"
img = cv2.imread(efn, cv2.IMREAD_COLOR)
count, boxes, scores, landmarks, alignimgs, features1 = GetImageInfo(img, 5)
vfn = os.getcwd() + "/test/2.png"
img = cv2.imread(vfn, cv2.IMREAD_COLOR)
count, boxes, scores, landmarks, alignimgs, features2 = GetImageInfo(img, 5)
score = get_similarity(features1[0], features2[0])
print('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>')
print('score = ', score)
if score > threshold:
print('same person')
else:
print('different person')