-
Notifications
You must be signed in to change notification settings - Fork 0
/
input.py
51 lines (40 loc) · 1.92 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
def teclado():
# Mensaje de bienvenida
print("¡Hola! Introduce los datos del nuevo paciente")
# Metemos datos
gender = input("Por favor ingrese el genero del paciente (Male/Female): ")
work_type = input(
"\nPor favor ingrese el tipo de trabajo(Private/Self-employed/Govt_job/children): \n")
residence_type = input(
"\nPor favor ingrese el tipo de residencia(Urban/Rural): \n")
smoking_status = input(
"\nPor favor ingrese el tipo de fumador(formerly smoked/never smoked/smokes/Unknown): \n")
age = input("\nPor favor ingrese la edad del pàciente: \n")
hypertension = input("\nPor favor ingrese la hipertension(1 or 0): \n")
heart_disease = input(
"\nPor favor ingrese si esta enfermo del corazón(1 or 0): \n")
avg_glucose_level = input("\nPor favor ingrese nivel medio de glucosa: \n")
bmi = input("\nPor favor ingrese el BMI (Base Muscle Index): \n")
stroke = 0
age = int(age)
bmi = float(bmi)
avg_glucose_level = float(avg_glucose_level)
heart_disease = int(heart_disease)
hypertension = int(hypertension)
stroke = int(stroke)
ever_married = 'Yes'
Residence_type = 'Urban'
list_variables_predictoras = [[gender,age,hypertension,heart_disease,ever_married,work_type,Residence_type,avg_glucose_level,bmi,smoking_status,stroke]]
# se elimina stroke ya que es la variable objetivo
columns = ['gender','age','hypertension','heart_disease','ever_married','work_type','Residence_type','avg_glucose_level','bmi','smoking_status','stroke']
# se crea dataframe del usuario
df_usuario_test = []
df_usuario_test = pd.DataFrame(list_variables_predictoras, columns=columns)
# df en crudo
#print(df_usuario_test.head())
#print(f"columnas", df_usuario_test.columns )
#print (df_usuario_test)
return df_usuario_test