-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMillerRabin.cpp
77 lines (67 loc) · 1.99 KB
/
MillerRabin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
* MillerRabin.cpp
*
* Created on: Sep 22, 2018
* Author: fanchen
*/
#include "MillerRabin.h"
MillerRabin::MillerRabin(int* tests, int size){
// constructor
// add test cases to the class
for (int i = 0; i < size; i++)
testCases.push_back(tests[i]);
}
unsigned long long MillerRabin::expoMod(unsigned long long base, int expo, unsigned long long mod){
// return the remainder of base^expo % mod
unsigned long long res = 1;
if (base > mod)
base %= mod; // reduce base
while (expo){
if (expo % 2) // expo is odd, record the current res
res = (res * base) % mod;
base = (base * base) % mod;
expo /= 2;
}
return res;
}
bool MillerRabin::millerRabinTest(int testCase, int d, int r, unsigned long long n){
// Miller-Rabin test for each test case
unsigned long long x = expoMod(static_cast<unsigned long long>(testCase), d, n); // x stores the initial result of a[i]^d mod n
if (x == 1 || x == n - 1) // current test case a[i] indicates n might be prime. Go for the next test case
return true;
else{
for (int j = 1; j <= r - 1; j++){ // check (a[i]^d)^2^j) mod n.
// Only need to check j = 1 to r - 1. If any iteration the remainder becomes n - 1,
// then stop because the remaining powers guarantees that remainder will remain 1.
x = (x * x) % n;
if (x == n - 1)
return true;
}
return false; // none of the check in the previous loop comes out true. Thus this test case fails
}
}
bool MillerRabin::isPrime(unsigned long long num){
// determine whether n is prime using Miller-Rabin
// trivial cases
if (num % 2 == 0 && num > 2) // n is even
return false;
for (auto it = testCases.begin(); it != testCases.end(); it++){
if (num == *it)
return true;
}
// non-trivial cases
int d, r = 0;
// find d such that n - 1 = d * 2^r
d = num - 1; // set d to n - 1
while(d % 2 == 0){
d /= 2;
r++;
}
for (auto it = testCases.begin(); it != testCases.end(); it++){
if (millerRabinTest(*it, d, r, num))
continue;
else
return false;
}
return true;
}