-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1407 lines (1348 loc) · 114 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Federico's Blog</title>
<link rel="stylesheet" href="http://federicov.github.io/theme/css/main.css" />
<link href="http://federicov.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Federico's Blog Atom Feed" />
<!--[if IE]>
<script src="https://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<body id="index" class="home">
<header id="banner" class="body">
<h1><a href="http://federicov.github.io/">Federico's Blog </a></h1>
<nav><ul>
<li><a href="http://federicov.github.io/pages/about.html">About</a></li>
<li><a href="http://federicov.github.io/category/machine-learning.html">Machine Learning</a></li>
<li><a href="http://federicov.github.io/category/misc.html">misc</a></li>
<li><a href="http://federicov.github.io/category/optimization.html">Optimization</a></li>
<li><a href="http://federicov.github.io/category/programming.html">Programming</a></li>
<li><a href="http://federicov.github.io/category/science.html">Science</a></li>
</ul></nav>
</header><!-- /#banner -->
<aside id="featured" class="body">
<article>
<h1 class="entry-title"><a href="http://federicov.github.io/Models-With-Scale-Factors.html">Fitting Models with Dimensionless Data</a></h1>
<footer class="post-info">
<abbr class="published" title="2016-05-04T00:00:00+02:00">
Published: Wed 04 May 2016
</abbr>
<address class="vcard author">
By <a class="url fn" href="http://federicov.github.io/author/federico-vaggi.html">Federico Vaggi</a>
</address>
<p>In <a href="http://federicov.github.io/category/optimization.html">Optimization</a>.</p>
<p>tags: <a href="http://federicov.github.io/tag/python.html">Python</a> <a href="http://federicov.github.io/tag/ode.html">ODE</a> <a href="http://federicov.github.io/tag/sympy.html">SymPy</a> <a href="http://federicov.github.io/tag/optimization.html">Optimization</a> </p>
</footer><!-- /.post-info --><style type="text/css">/*!
*
* IPython notebook
*
*/.ansibold{font-weight:700}.ansiblack{}.ansired{color:#8b0000}.ansigreen{6400}.ansiyellow{color:#c4a000}.ansiblue{8b}.ansipurple{color:#9400d3}.ansicyan{color:#4682b4}.ansigray{color:gray}.ansibgblack{background-}.ansibgred{background-color:red}.ansibggreen{background-color:green}.ansibgyellow{background-color:#ff0}.ansibgblue{background-f}.ansibgpurple{background-color:#ff00ff}.ansibgcyan{background-ff}.ansibggray{background-color:gray}div.cell{border:1px solid transparent;display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;border-radius:2px;box-sizing:border-box;-moz-box-sizing:border-box;border-width:thin;border-style:solid;width:100%;padding:5px;margin:0;outline:0}div.cell.selected{border-color:#ababab}@media print{div.cell.selected{border-color:transparent}}.edit_mode div.cell.selected{border-color:green}.prompt{min-width:14ex;padding:.4em;margin:0;font-family:monospace;text-align:right;line-height:1.21429em}div.inner_cell{display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}@-moz-document url-prefix(){div.inner_cell{overflow-x:hidden}}div.input_area{border:1px solid #cfcfcf;border-radius:2px;background:#f7f7f7;line-height:1.21429em}div.prompt:empty{padding-top:0;padding-bottom:0}div.unrecognized_cell{padding:5px 5px 5px 0;display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}div.unrecognized_cell .inner_cell{border-radius:2px;padding:5px;font-weight:700;color:red;border:1px solid #cfcfcf;background:#eaeaea}div.unrecognized_cell .inner_cell a,div.unrecognized_cell .inner_cell a:hover{color:inherit;text-decoration:none}@media (max-width:540px){.prompt{text-align:left}div.unrecognized_cell>div.prompt{display:none}}div.code_cell{}div.input{page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}@media (max-width:540px){div.input{-webkit-box-orient:vertical;-moz-box-orient:vertical;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}}div.input_prompt{color:navy;border-top:1px solid transparent}div.input_area>div.highlight{margin:.4em;border:none;padding:0;background-color:transparent}div.input_area>div.highlight>pre{margin:0;border:none;padding:0;background-color:transparent}.CodeMirror{line-height:1.21429em;font-size:14px;height:auto;background:0 0}.CodeMirror-scroll{overflow-y:hidden;overflow-x:auto}.CodeMirror-lines{padding:.4em}.CodeMirror-linenumber{padding:0 8px 0 4px}.CodeMirror-gutters{border-bottom-left-radius:2px;border-top-left-radius:2px}.CodeMirror pre{padding:0;border:0;border-radius:0}.highlight-base,.highlight-variable{}.highlight-variable-2{color:#1a1a1a}.highlight-variable-3{color:#333}.highlight-string{color:#BA2121}.highlight-comment{color:#408080;font-style:italic}.highlight-number{80}.highlight-atom{color:#88F}.highlight-keyword{color:green;font-weight:700}.highlight-builtin{color:green}.highlight-error{color:red}.highlight-operator{color:#A2F;font-weight:700}.highlight-meta{color:#A2F}.highlight-def{f}.highlight-string-2{color:#f50}.highlight-qualifier{color:#555}.highlight-bracket{color:#997}.highlight-tag{color:#170}.highlight-attribute{c}.highlight-header{f}.highlight-quote{90}.highlight-link{c}.cm-s-ipython span.cm-keyword{color:green;font-weight:700}.cm-s-ipython span.cm-atom{color:#88F}.cm-s-ipython span.cm-number{80}.cm-s-ipython span.cm-def{f}.cm-s-ipython span.cm-variable{}.cm-s-ipython span.cm-operator{color:#A2F;font-weight:700}.cm-s-ipython span.cm-variable-2{color:#1a1a1a}.cm-s-ipython span.cm-variable-3{color:#333}.cm-s-ipython span.cm-comment{color:#408080;font-style:italic}.cm-s-ipython span.cm-string{color:#BA2121}.cm-s-ipython span.cm-string-2{color:#f50}.cm-s-ipython span.cm-meta{color:#A2F}.cm-s-ipython span.cm-qualifier{color:#555}.cm-s-ipython span.cm-builtin{color:green}.cm-s-ipython span.cm-bracket{color:#997}.cm-s-ipython span.cm-tag{color:#170}.cm-s-ipython span.cm-attribute{c}.cm-s-ipython span.cm-header{f}.cm-s-ipython span.cm-quote{90}.cm-s-ipython span.cm-link{c}.cm-s-ipython span.cm-error{color:red}.cm-s-ipython span.cm-tab{background:url('')right no-repeat}div.output_wrapper{display:-webkit-box;-webkit-box-align:stretch;display:-moz-box;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;z-index:1}div.output_scroll{height:24em;width:100%;overflow:auto;border-radius:2px;-webkit-box-shadow:inset 0 2px 8px rgba(0,0,0,.8);box-shadow:inset 0 2px 8px rgba(0,0,0,.8);display:block}div.output_collapsed{margin:0;padding:0;display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}div.out_prompt_overlay{height:100%;padding:0 .4em;position:absolute;border-radius:2px}div.out_prompt_overlay:hover{-webkit-box-shadow:inset 0 0 1px #000;box-shadow:inset 0 0 1px #000;background:rgba(240,240,240,.5)}div.output_prompt{color:#8b0000}div.output_area{padding:0;page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}div.output_area .MathJax_Display{text-align:left!important}div.output_area div.output_area img,div.output_area svg{max-width:100%;height:auto}div.output_area img.unconfined,div.output_area svg.unconfined{max-width:none}.output{display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}@media (max-width:540px){div.output_area{-webkit-box-orient:vertical;-moz-box-orient:vertical;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}}div.output_area pre{margin:0;padding:0;border:0;vertical-align:baseline;background-color:transparent;border-radius:0}div.output_subarea{overflow-x:auto;padding:.4em;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1;max-width:calc(100% - 14ex)}div.output_text{text-align:left;line-height:1.21429em}div.output_stderr{background:#fdd}div.output_latex{text-align:left}div.output_javascript:empty{padding:0}.js-error{color:#8b0000}div.raw_input_container{font-family:monospace;padding-top:5px}span.raw_input_prompt{}input.raw_input{font-family:inherit;font-size:inherit;color:inherit;width:auto;vertical-align:baseline;padding:0 .25em;margin:0 .25em}input.raw_input:focus{box-shadow:none}p.p-space{margin-bottom:10px}div.output_unrecognized{padding:5px;font-weight:700;color:red}div.output_unrecognized a,div.output_unrecognized a:hover{color:inherit;text-decoration:none}.rendered_html{}.rendered_html :link,.rendered_html :visited,.rendered_html h1:first-child{margin-top:.538em}.rendered_html h2:first-child{margin-top:.636em}.rendered_html h3:first-child{margin-top:.777em}.rendered_html h4:first-child,.rendered_html h5:first-child,.rendered_html h6:first-child{margin-top:1em}.rendered_html *+ol,.rendered_html *+ul{margin-top:1em}.rendered_html *+table{margin-top:1em}.rendered_html *+p{margin-top:1em}.rendered_html *+img{margin-top:1em}div.text_cell{display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}@media (max-width:540px){div.text_cell>div.prompt{display:none}}div.text_cell_render{outline:0;resize:none;width:inherit;border-style:none;padding:.5em .5em .5em .4em;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box}a.anchor-link:link{text-decoration:none;padding:0 20px;visibility:hidden}h1:hover .anchor-link,h2:hover .anchor-link,h3:hover .anchor-link,h4:hover .anchor-link,h5:hover .anchor-link,h6:hover .anchor-link{visibility:visible}.text_cell.rendered .input_area{display:none}.text_cell.rendered .text_cell.unrendered .text_cell_render{display:none}.cm-header-1,.cm-header-2,.cm-header-3,.cm-header-4,.cm-header-5,.cm-header-6{font-weight:700;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif}.cm-header-1{font-size:185.7%}.cm-header-2{font-size:157.1%}.cm-header-3{font-size:128.6%}.cm-header-4{font-size:110%}.cm-header-5,.cm-header-6{font-size:100%;font-style:italic}</style>
<style type="text/css">.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Relative-Measurements:">Relative Measurements:<a class="anchor-link" href="#Relative-Measurements:">¶</a></h2><p>When calibrating a model to data, it's common to only have access to relative measurements. For example, instead of having absolute protein levels in units of uM, your only measure of protein abundance is intensity of bands in
<a href="http://en.wikipedia.org/wiki/Western_blot">western blots</a>. Other common examples are relative abundance measurements from mass spectrometry, counts from photodetectors, or RNA abundance from RNAseq, etc...</p>
<p>For example, here is what a western block (<strong>column A</strong>) looks like with its relative quantification (<strong>column B</strong>):</p>
<p><img alt="img" src="https://openi.nlm.nih.gov/imgs/512/33/3815147/PMC3815147_pone.0079073.g004.png?keywords=sd" /></p>
<p>(taken from: <a href="https://openi.nlm.nih.gov/detailedresult.php?img=PMC3815147_pone.0079073.g004&req=4">https://openi.nlm.nih.gov/detailedresult.php?img=PMC3815147_pone.0079073.g004&req;=4</a>).</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Calibrating-Models-with-Data-in-Arbitrary-Units:">Calibrating Models with Data in Arbitrary Units:<a class="anchor-link" href="#Calibrating-Models-with-Data-in-Arbitrary-Units:">¶</a></h2><p>How can we use this data (in arbitrary units) to calibrate a model where the quantities have specific physical meaning? In an ideal case, we can do additional experiments and build calibration curves to calculate the conversion factor between protein levels and the intensity of bands in western blots, but this is not always possible. Alternatively, we can make our models completely <a href="https://en.wikipedia.org/wiki/Nondimensionalization">dimensionless</a> by rescaling all quantities in our model by appropriately chosen constants.</p>
<p>A third option is to use scaling factors. To do this, we assume that in the range in which we are interested, the amount of signal measured by our instrument is linearly proportional to the amount of protein/RNA. In practice, the relationship usually follows a saturation curve, which can be described by something like a <a href="https://en.wikipedia.org/wiki/Hill_equation_%28biochemistry%29">Hill function</a>. The Hill Function is probably my 2nd favorite case of a mathematical formula being invented by someone with the perfect name - the undisputed first is still the <a href="https://en.wikipedia.org/wiki/Poynting_vector">Poynting vector</a> which does exactly what the name suggests.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Linearizing-Saturation-Curves:">Linearizing Saturation Curves:<a class="anchor-link" href="#Linearizing-Saturation-Curves:">¶</a></h2><p>Fortunately, a saturation curve with a large exponent can be approximated by a linear fit quite accurately, as long as we are careful to make sure our measurements are done in the correct range.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">autograd.numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">autograd</span> <span class="k">import</span> <span class="n">grad</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="k">def</span> <span class="nf">hill</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">Km</span><span class="p">,</span> <span class="n">Vmax</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Standard Hill function"""</span>
<span class="n">numerator</span> <span class="o">=</span> <span class="n">Vmax</span><span class="o">*</span><span class="p">(</span><span class="n">L</span><span class="o">**</span><span class="n">n</span><span class="p">)</span>
<span class="n">denominator</span> <span class="o">=</span> <span class="n">Km</span><span class="o">**</span><span class="n">n</span> <span class="o">+</span> <span class="n">L</span><span class="o">**</span><span class="n">n</span>
<span class="k">return</span> <span class="n">numerator</span><span class="o">/</span><span class="n">denominator</span>
<span class="c1"># To calculate the gradient of the Hill function (with respect to L) we use autograd.</span>
<span class="n">hill_grad</span> <span class="o">=</span> <span class="n">grad</span><span class="p">(</span><span class="n">hill</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">L</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
<span class="n">Km</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="n">Vmax</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">hill</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">Km</span><span class="p">,</span> <span class="n">Vmax</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="c1"># Evaluate the gradient at 0.5 wrt L</span>
<span class="n">dv_dl</span> <span class="o">=</span> <span class="n">hill_grad</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">Km</span><span class="p">,</span> <span class="n">Vmax</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="c1"># Approximate the Hill function as a linear equation using a 1st order Taylor series:</span>
<span class="n">v_approx</span> <span class="o">=</span> <span class="n">hill</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">Km</span><span class="p">,</span> <span class="n">Vmax</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="n">L</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">*</span> <span class="n">dv_dl</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Hill Function'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">v_approx</span><span class="p">,</span> <span class="s1">'r'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'First Order Taylor Series'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[3]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>(0, 1)</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//HXCXUpAUIoEUJgEQSpKiKyoAEs2BawgQUJ
X1TWVde6gpW46s+1YVlWFGEJrhhQLGDQFRWDgiwtKMIaitICCVEILcAAyfn9cUMIIWUSZubOTN7P
x+M+MjP3zJ1PJrmfOXPu555rrLWIiEh4inA7ABER8R8leRGRMKYkLyISxpTkRUTCmJK8iEgYU5IX
EQlj5SZ5Y8wUY8wOY8yqMtq8ZoxZb4z53hjT3bchiohIZXnTk58KXFraSmPMZUBba207YDTwho9i
ExGRU1RukrfWLgRyymgyCHi7oO0SoIExpplvwhMRkVPhizH5FsDWIve3FTwmIiIu04FXEZEwVt0H
29gGxBa537LgsZMYYzRRjohIJVhrTWWe522SNwVLSeYAdwIzjTG9gN3W2h2lbSgUJkRLTEwkMTHR
7TDKVSXjvPtuaNwY/PB7h8L7GcwxWguHDsGePfDMM4kkJCSybx8nLPv3Q26u8/PY7dxcOHDg+M+i
y8GDzpKfD7/7nbPUru0stWodv1+rlrMUvV2zprMcu1+jxvHHj93+9NNErrsukRo1KHepVu347erV
j/889ni1as796tUhwsdjJMZUKr8DXiR5Y8y7QDzQ2BizBRgH1ASstXaStfZTY8zlxpgNQC4wstLR
iJTF44HkZFi2zO1IwtrRo7BzJ/z2m7Ps3Oksu3Y5S07O8WX3biepH/tpDDRo4Gxj0SKoX//4Uq+e
s9SvD9HREBcHdes6S506x38WXY4l9ho1nG37WmYm3Hyz77cbTMpN8tbaG71oc5dvwhEpQ0oKdOkC
bdq4HUnIsdZJ2Nu2OYlt+3bIynKWHTucJTvbWfbsgagoJxFHRzu3Gzd2lkaNnLe/USNnadjQWRo0
cH7WquW8XmKiX75sSSX4Ykw+7MTHx7sdgleqXJxJSZCQ4JttlSAU3s/SYvR4YPNm2LQJNm6ELVuO
LxkZTnKvWxdOO81ZYmKc5fTT4Q9/gGbNnKVpUyepn+pwQyi8lxA6cZ4KE8gxcmOMDYUxeQlCWVnQ
oYOTserVczsaVxw9Cj//DOvWHV82bHCWrCxo2RJat3Z62q1aOcMhrVo5j7do4Qx/SGgyxvj9wKuI
u6ZPhyFDqkSCz893euQ//girVsHq1fC//znJPCbG+axr3x66dYNrr4W2bZ1kXl17s5RAPXkJftZC
164wYQJceKHb0fiUtU7vfOlSWL4c0tJg5Urn4GS3bs6v3bkzdOoEZ5zhHISUqudUevJK8hL8VqyA
665zurK+rk0LsIMHneKgRYtg4UJYssQZRunZE3r0gHPOgbPOcg54ihyjJC/hzY+18f52+DD897/w
9dcwf77zedWpE/Tp4xzwPP98ZwhGpCxK8hK+PB7nqOGyZSFTOrl1K8ydC//5j5Pc27WDAQOgf38n
sVeBwwriYzrwKuErBGrjrYU1a+CDD2DOHKeU8bLL4Prr4a23oEkTtyOUqkxJXoKbn2vjT8Xatc4J
uO+955yif801MH6801tXpYsECw3XSPAKwtr4nByYMQOmTXN67EOHOst554X8MWEJYhqukfAUJLXx
1jpVMBMnwuzZcOml8MQTcMkl6rFL8NO/qAQna52hmgkTXAvh8GGYORNefhn27oXRo+Gll1TeKKFF
SV6CU1qaM/ds374Bf+m9e51e+2uvQceO8PTTMHCghmMkNCnJS3BKSoIRIwKaWffsgVdfhX/8wxmK
mTsXuncP2MuL+IWSvAQfj8c5url0aUBe7sABJ7mPHw+XX+6cjdq+fUBeWsTvlOQl+ASoNj4vD95+
2zmI2quXkruEJyV5CT4BqI1fvBjuvNOZY/39950kLxKOVCcvwSUryznamZHhZGAf+/VXGDvWmXLg
xRdh2DD/XFZOxJdOpU5e9QISXI7Vxvs4wVvrDPN37gyRkfDTT3DDDUrwEv40XCPB41ht/D//6dPN
7tgBf/4zpKfDJ5840/qKVBXqyUvwSEtzSl369PHZJo+VQbZv70zzqwQvVY168hI8fFgb7/E4Y+8f
fuhMIObCOVUiQUFJXoKDx+NM6bh8+SlvavNmZ0bI2FjnUnpRUT6ITyREabhGgsOx2vjWrU9pM6mp
zoyQN97o9OKV4KWqU09egkNSEowcWemnW+vMZfbMM/DOO3DRRb4LTSSUqU5e3HeKtfF5eXDvvU4v
fvZs+P3vfR+iiJs0n7yEtlOojT94EG6+2bmYx8KF0KCBH+ITCWEakxd3HauNr8Q0Bjk5zmyRNWvC
Z58pwYuUREle3HVs3vgK1sbv3An9+0OPHs4XgVq1/BSfSIhTkhd3VaI2Pjsb+vVzLuQxfrwu5iFS
Fh14Ffd4PNCiBSxb5vW0wjt2OD34a6+FxETNPSNVgw68SmhKSXFmDPMywefkwMUXw/XXw7hxfo5N
JEzoi664pwK18bm5cMUVTpJ/4gn/hiUSTjRcI+7IyoIOHZza+Hr1ymx6+DBcdZUzsjNlioZopOrR
fPISeo7VxpeT4K11qivr1IFJk5TgRSpKY/ISeMdq4ydMKLfpk0/Cxo3w9ddQXf+tIhXmVU/eGDPQ
GJNujFlnjBlTwvpIY8wcY8z3xpgfjTEJPo9Uwsex2vhy5v99913ns+Djj6F27cCEJhJuyk3yxpgI
YAJwKdAJuMEY06FYszuBNdba7kA/4CVjjPpdUjIvauMXL3bmo/nkE2jWLHChiYQbbxJxT2C9tXYz
gDFmBjAISC/SxgL1C27XB3Zaa4/6MlAJE17MG5+Z6dTBT53qzD4sIpXnzXBNC2BrkfsZBY8VNQE4
0xizHfgBuMc34UnYKWfe+CNHnDr40aOdkkkROTW+GlK5FFhpre1vjGkLfGGM6Wqt3V+8YWJiYuHt
+Ph44uPjfRSChIRyJiN7+GGn4OaxxwIWkUjQSU1NJTU11SfbKrdO3hjTC0i01g4suD8WsNba54q0
SQGetdYuKrj/FTDGWru82LZUJ1+VlVMb/+GHcP/9zgW3Gzd2IT6RIOXvOvllwOnGmDhjTE1gGDCn
WJvNwEUFwTQD2gO/VCYgCWNl1MZv2uQM0bz3nhK8iC+VO1xjrc0zxtwFzMP5UJhirf3JGDPaWW0n
AU8DScaYVQVPe8hau8tvUUvoKaM2Pi8Phg+Hhx6Cnj0DH5pIONO0BhIYK1bAddfBhg0nlU4++yzM
mwdffgnVqrkUn0gQ0yyUEvxKqY1fsQJeftn5qQQv4ntK8uJ/Hg/MmAFLl57w8IEDcNNN8NprEBvr
UmwiYU4TlIn/zZ1b4rzxiYnQvTsMG+ZOWCJVgXry4n9TpzpDNUWsWAHTpsGPP7oUk0gVoQOv4l8l
1MYfOQLnngsPPOBU1YhI2TSfvASvEmrjX3zRmXTs5ptdjEukilBPXvzHWuja1amNv/BCANatg969
nfnJSpm+RkSKUU9eglOxeeOthb/8BcaOVYIXCRQlefGfYrXxc+bAli1wj+YoFQkYDdeIf3g8zpW3
ly2DNm04eBDOPBPeegsuusjt4ERCi4ZrJPgcmze+oDb+hRfgnHOU4EUCTXXy4h/HhmpwZph89VVn
iF5EAkvDNeJ7xWrjhw2Djh1h3Di3AxMJTZqgTIJLkdr4Zcvg229hyhS3gxKpmjQmL751bN74hASs
hb/+1Zmjpm5dtwMTqZqU5MW3itTGf/opZGfDyJFuByVSdSnJi28V9OLzbARjxsBzz0F1DQqKuEa7
n/iOxwPJybB8OdOmQVQUXHml20GJVG1K8uI7KSnQtSuemNYkJsLMmWAqVQ8gIr6i4RrxnYKhmn/9
y7lGyPnnux2QiKhOXnwjKws6duTQ+q20O6seH37ozBkvIqdO0xqI+wpq4yfPqEf37krwIsFCPXk5
dQXzxntemsDvR17IJ5/A2We7HZRI+FBPXtxVUBv/xpq+nHuuErxIMFF1jZy6pCSO3DSC516IYO5c
t4MRkaLUk5dTU1Ab/37tWzjrLDjrLLcDEpGi1JOXU5OSQn7nLjz+rzZMm+Z2MCJSnJK8nJqkJJZ2
TCDmKPTp43YwIlKckrxUXlYW9ttvuS82mcf+7nYwIlISjclL5U2fzrZzh5Br6nH55W4HIyIlUU9e
Kqdg3vjnzATGjtUcNSLBSidDSeWsWMGhP15Hx+obWP9zhKYTFvEjXf5PAi8piZSoEdw9UgleJJip
Jy8V5/GQF9OCc/KWsWBLGxo0cDsgkfCmnrwEVkoKm+p1If5qJXiRYOdVdY0xZqAxJt0Ys84YM6aU
NvHGmJXGmNXGmK99G6YEk6OTkxi/K4G//MXtSESkPOX25I0xEcAEYACwHVhmjJltrU0v0qYB8E/g
EmvtNmNMtL8CFpdlZZG34FtyLkrm9793OxgRKY83PfmewHpr7WZr7RFgBjCoWJsbgQ+stdsArLW/
+TZMCRb570xnbvXB3PHXem6HIiJe8CbJtwC2FrmfUfBYUe2BKGPM18aYZcaY4b4KUIKIteyfkMRn
zUdqCgOREOGrA6/VgbOB/kBdYLExZrG1doOPti/BIC2N3Oxcev+jr05+EgkR3iT5bUCrIvdbFjxW
VAbwm7X2EHDIGPMN0A04KcknJiYW3o6Pjyc+Pr5iEYtr9ryaxDSTwD03ajYMEX9KTU0lNTXVJ9sq
t07eGFMNWItz4DUTWArcYK39qUibDsA/gIFALWAJMNRa+79i21KdfKjyeMht2IJXhy/nkUmt3Y5G
pErxa528tTbPGHMXMA9nDH+KtfYnY8xoZ7WdZK1NN8Z8DqwC8oBJxRO8hDbPhymkHe3KsLGt3Q5F
RCpAZ7yKV7ac9Ufez7+WB364xe1QRKocnfEqfmWzdtDwx2/pNDPZ7VBEpIKU5KVcW/8+naW/G8yQ
wXXdDkVEKkhlElI2a4l4eyqeG0dSrZrbwYhIRSnJS5n2f7uSI3sOcFGizn4SCUVK8lKmjeOSWNJh
BM1i9K8iEoo0Ji+l83houTCZnCnL3I5ERCpJSV5K9fOrKWRX70yfm1u7HYqIVJK+g0upcv+ZxK+X
JxCh/xKRkKWToaREuT9ncbRdBw6szSCmnaYVFnHTqZwMpT6alGj1w9NZ0XKwErxIiFOSl5NZS3RK
ErXvGOl2JCJyipTk5SQbP0ij+uFcej7Q1+1QROQUqbpGTrL9/yVxoNcI4mqqDyAS6pTk5QRH9nvo
+H0yu79QbbxIOFCSlxP88EwKEfW7cPaANm6HIiI+oO/jcgI7NYl91yS4HYaI+Ijq5KXQb6uzqNGl
AxHbM6gfo9JJkWChOnnxiTWPTGdV2yFK8CJhREleALD5ltPmJVH/7gS3QxERH9KBVwEgPTmNOnkH
aHunauNFwomSvADw6wtJHP3DCOKq68udSDhRkheO7PfQaVUy++YvdzsUEfExJXnh+6dTiIjsyjnx
rd0ORUR8TN/NBTMtib1DEtwOQ0T8QHXyVVzOT1mYMztCRgYNW9R1OxwRKYHq5KXS/vfodFa2GaIE
LxKmlOSrMmtp9p9p/G70CLcjERE/UZKvwjZ9tJLqh3PpcZ9q40XClZJ8FZb17FTSz72F6po3XiRs
qYSyirKHPLRPS2b7x5o3XiScKclXUekvprCvdhfOvVLzxouEM31Pr6KOvJVE9uUJmEoVZYlIqFCd
fBV0aFMWnt93YN//MmjZQdMKiwQ71clLhawbN53FzYYowYtUAUryVY21NPgoifwRCW5HIiIBoCRf
xeyen4bdn0ufsaqNF6kKvEryxpiBxph0Y8w6Y8yYMtqda4w5Yoy52nchii9tfTqJ5Z1GENlQn+8i
VUG5JZTGmAhgAjAA2A4sM8bMttaml9Du78Dn/ghUfMDjIXZhMr++odp4karCm+5cT2C9tXaztfYI
MAMYVEK7u4FZQLYP4xMf2jElhdWmC31vUW28SFXhTZJvAWwtcj+j4LFCxpjTgMHW2omAKq+D1J5X
k9h4QQI1argdiYgEiq/OeH0FKDpWr0QfZGxmFs03fEvHN5PdDkVEAsibJL8NaFXkfsuCx4rqAcww
xhggGrjMGHPEWjun+MYSExMLb8fHxxMfH1/BkKUytv59OsvqDuHqC1UbLxLsUlNTSU1N9cm2yj3j
1RhTDViLc+A1E1gK3GCt/amU9lOBT6y1H5awTme8usFatjfpyrw//pOEf13gdjQiUkGncsZruT15
a22eMeYuYB7OGP4Ua+1PxpjRzmo7qfhTKhOI+M+RpWkcycml78N93A5FRAJMc9dUAZuuupsvv4/m
1q3j3A5FRCrBrz15CXEeD1Hzkqn9mGrjRaoinfYY5nJnpvB9Xhcu+7Nq40WqIiX5MLdzfBIruybQ
uLHbkYiIGzRcE86ysoha/S1xSaqNF6mq1JMPYzkTpjOn2hAuu0618SJVlZJ8uLKWI5OT2H5JArVq
uR2MiLhFST5M2RVpeHbl0uuvmjdepCpTkg9Tv76YxAd1bqF3H/2JRaoyHXgNRx4PdWYnkzdqGRHK
8SJVmlJAGDr6cQo/5HXhj/eoNl6kqlOSD0O/vZTE13EJtGvndiQi4jYl+XCTlUX977/ltLuvcTsS
EQkCSvJh5sBb0/mIIVx9i2rjRURJPrxYy8E3ktjwhwQaNnQ7GBEJBkry4SQtjUM7c+n5gGrjRcSh
JB9Gcl5OIrn6LVwyUH9WEXGoTj5ceDzU/DCZQzcso7r+qiJSQF2+MJE3x6mNH3yfauNF5Dgl+TCx
88UkvmiRQOfObkciIsFEST4cZGVRZ+VC1caLyEmU5MNA7iSnNv66kaqNF5ETKcmHuoLa+E0XqjZe
RE6mJB/q0tI4uPMAvR/q43YkIhKElORD3K8vJPH+70bQb4D+lCJyMlVUhzKPh9/NTiZi9HLNGy8i
JVJqCGGeD1JYebQrQ+5r7XYoIhKklORDWPbzSSw7cwRxcW5HIiLBSsM1oSori4arv+WM6cluRyIi
QUxJPkRtf2E639YawjXXqDZeREqn4ZpQZC0kJZF7bYImIxORMinJh6CDi9I4vDuXi/+meeNFpGxK
8iFo47gkFp0+gtg4/flEpGz6sh9qPB5ivplB5sSlbkciIiFAST7ErH85hd+qdSZ+pOaNF5Hy6ft+
iNk/IYmcQQlUq+Z2JCISCoy1NnAvZowN5OuFm+xVWdTq1oG8zRlEtVLppEhVYYzBWmsq81yvevLG
mIHGmHRjzDpjzJgS1t9ojPmhYFlojOlSmWCkbN//dTpr2g9RghcRr5U7Jm+MiQAmAAOA7cAyY8xs
a216kWa/ABdYa/cYYwYCbwG9/BFwVXXYY4mdn0StSRPcDiUgWrduzebNm90OQySg4uLi2LRpk0+3
6c2B157AemvtZgBjzAxgEFCY5K21/y3S/r9AC18GKTD/xTS6Vs/ltBFVozZ+8+bNaGhPqhpjKjUi
UyZvhmtaAFuL3M+g7CR+K/DZqQQlJ9s3IYk9g0agOYVFpCJ8WkJpjOkHjARKvUxRYmJi4e34+Hji
4+N9GUJYWvKNhwHZyUQ+tcztUEQkAFJTU0lNTfXJtsqtrjHG9AISrbUDC+6PBay19rli7boCHwAD
rbU/l7ItVddUwnM9P+DmnH/QYn2q26EETEE1gdthiARUaf/3/q6uWQacboyJM8bUBIYBc4oF0Aon
wQ8vLcFL5aSnQ/cfkoj+60i3QxGREFRukrfW5gF3AfOANcAMa+1PxpjRxpjbC5o9DkQBrxtjVhpj
dM69j0z6WxYXRCyk1o3XuB2KVEDnzp355ptvAHjyyScZPnw44BxQjoiIID8/383wynTHHXfwzDPP
uB2G+IhXR/Gstf+x1p5hrW1nrf17wWNvWmsnFdy+zVrb2Fp7trX2LGttT38GXVVs3w51P56OuXoI
1FNtfLBo06YN8+fPP+GxadOm0bfv8cqn1atXc8EFFxTeL1o1UVYFRevWralTpw6RkZHUr1+fyMhI
srKyfBj9iYrHDTBx4kQeffRRv72mBJZKNYLYKy9b7qiTRO3RCW6HIl7wRfmbMYa5c+eyd+9e9u3b
x969e2nevLkPoiuZtdYvZXsSPJTkg9SePbB8UhpN6h6APqUWK0mQKqm3762SDrwtWLCA2NjYUl/j
ySefZOjQoYwYMYLIyEi6dOlCWlpaYduMjAyuueYamjZtSpMmTfjLX/5Ceno6d9xxB4sXL6Z+/fpE
RUUBMHLkSJ544onC57711lu0a9eO6OhoBg8eTGZmZuG6iIgI3nzzTdq3b09UVBR33XVXpX5n8R8l
+SD1yiswNmYaNUapNj4UBKISqLwe9yeffMKNN97Inj17uOqqq7jzzjsByM/P58orr6RNmzZs2bKF
bdu2MWzYMDp06MAbb7zB+eefz759+9i1a9dJ25w/fz6PPPIIs2bNIjMzk1atWjFs2LAT2sydO5cV
K1bwww8/8N577zFv3jzf/dJyypQ9gtCuXfDma05tPLfc4nY4QckY3yyVNXjwYKKiogqXYwnVF4pu
++qrr/b6eX369OHSSy/FGMPw4cNZtWoVAEuWLCEzM5Pnn3+e2rVrU7NmTXr37u3VNt99911GjRpF
t27dqFGjBs8++yyLFy9my5YthW0efvhh6tevT2xsLP369eP777+v2C8sfqUkH4TGj4fHzppLtW6d
oXVrt8MJStb6Zqms2bNns2vXrsLl9ddf99nvVnTbH374odfPKzp2X6dOHQ4dOkR+fj4ZGRnExcUR
UYlvhNu3bycuLq7wft26dWncuDHbtm0rfKxZs2YnvO7+/fsr/DriP7poSJD57TeYOBG2npUEI1Ub
H6z8OTxT0rbr1q3LgQMHCu/n5eXx66+/erW92NhYtmzZQn5+/kmJvrwhoNNOO+2EieJyc3PZuXMn
LVu29Oq1xX3qyQeZ55+HUVfuoM6Kb+Ea1caHo8p8QLRv355Dhw7x2WefcfToUZ5++mkOHz7s1ev0
7NmTmJgYxo4dy4EDB/B4PHz33XeA0wvPyMjgyJEjJW7jhhtuYOrUqaxatQqPx8MjjzxCr169TjoI
LMFLST6I7NgBkyfDI3HTYcgQqFvX7ZCkBN6UHJbVpjLrIiMjef311xk1ahQtW7akfv365famj20r
IiKCTz75hPXr19OqVStiY2N57733AOjfvz+dOnWiefPmNG3a9KRtDBgwgKeeeoqrr76aFi1asHHj
RmbMmFFqvCrHDD66MlQQ+fOfoWYNyyvzu8KECXDhhW6H5BrNXSNVkT/mrtGYfJBYvRpmzYL1M9Lg
k1zoWzXmjRcR/9JwTRCwFu67Dx5/HBp8lAQjVBsvIr6hnnwQSEmBjAz400gPtE6GZZo3XkR8Q0ne
ZYcPwwMPwKuvQo3PU6BzZ2jTxu2wRCRMKMm77B//gLZt4bLLgKuSVBsvIj6l6hoX/fIL9OwJ330H
7SOzoEMHZ9xG0wqrukaqJLeuDCV+YC3cfjs89BC0bw9ML6iNV4IXER9SknfJ1Kmwezfcfz9Oxk9K
goQEl6MSkXCjJO+C7dth7FiYMgWqVwfS0iBXtfGhbuvWrURGRgb9MFMoXIIQnNktb7/99vIbumD9
+vWF8+8HOyX5ALMW/vQnZ6imW7eCB5OSVBsfQkq7RF9sbCx79+6t1Kn9JV2GryQpKSmcd9551KtX
jyZNmjB8+PATZoT0lq+mH7jjjjsK34NatWpRs2ZNIiMjiYyM5IorrvDJa/jKrFmz6NatGw0bNqRZ
s2ZccsklbN++vVLbateuXYnz7wcjZZUAe+UVyMqCwgvveDyQrHnjQ0llL9FXVg/fm8vwzZo1i5tu
uon777+fnTt3smbNGmrWrEmfPn3Ys2dPic/Jy8srN66KKL69iRMnFr4HjzzyCMOGDWPv3r3s3buX
uXPn+vS1KxsjwE8//cRtt93G66+/zu7du/n555+5/fbbKzX9sq/fU39Tkg+gJUvg2Wdh5kyoWbPg
wZQU6NJFtfEhpqSEXXwYpF+/fjz22GP06dOHunXrsnHjRpKSkmjbti2RkZG0bduW5OTkUi/DV9yD
Dz7IE088wdChQ6lVqxZNmzZl8uTJ1KtXj5dffhlwvhH06dOH+++/n+joaJ588kny8/N58MEHadKk
CaeffvpJyXfv3r3ceuutnHbaacTGxvL4448X/n4lba8i8vLyuPbaa2nevDlRUVEMGDCAdevWAbBw
4UJatWp1Qvt3332X888/v8RtffDBB3Tq1ImoqCguueQSNmzYULguJiaGl156ic6dO9OgQYOTnpuW
lkbHjh35wx/+AEC9evUK4wLn6llPPfUUbdu2pWnTpgwfPpy9e/cCsHbtWmrUqMHkyZNp1aoVV1xx
ReFjx+Tk5DBixAhiYmKIi4vjb3/7W+G6tWvX0rdv38JvEAkBPvamJB8gu3bB0KEwaVKxfK4DrmGl
eG/8nXfeYfLkyezbt4/o6GjuuecePv/8c/bu3ct3331H9+7dvboM39q1a9m6dSvXXnvtSa93zTXX
8MUXXxQ+tmTJEk4//XSys7N59NFHmTRpEp9++ik//PADy5cvZ9asWSdsY8SIEdSsWZNffvmFlStX
8sUXXzB58uRSt1dRgwcPZuPGjWRlZdGhQwdGjBgBOFeyqlWrFgsWLDjh/Tq2vqgff/yRkSNH8sYb
b5Cdnc0FF1zAoEGDTjiu8N577/HVV1+xc+fOk57fo0cPVq5cyUMPPcSCBQtOmJsf4IUXXuDLL7/k
u+++IyMjgxo1anDvvfcWrs/Ly2Pp0qWsW7eO2bNnAyf+rW+66SYaNWrEpk2bWLp0KbNnz+bf//43
4BxbGDJkCLt372bLli2MHj26wu/hKbHWBmxxXq7qOXrU2iuvtPa++4qtyMy0tmFDa/fvdyWuYFbu
/4qvLg5VCa1bt7b169e3jRo1so0aNbJDhgyx1lq7adMmGxERYfPy8qy11sbHx9tx48YVPi83N9c2
atTIfvjhh/bgwYMnbDMpKcn27du31NdcuHChjYiIsB6P56R1b7zxhm3fvn3hduLi4k5Y379/f/vm
m28W3p96ai49AAALvklEQVQ3b15hnFlZWbZWrVr20KFDheuTk5Ntv379St1eaRITE+3w4cPLbJOZ
mWmrVatW+Hs8+eSTdtSoUdZaa7OysmzdunXtzp07rbXWjh071t52223WWmsfffRRO2LEiMLt5OXl
2SZNmtglS5ZYa61t3ry5nTFjRpmvvWjRInvttdfaJk2a2Dp16thbb7218Pdu06aN/e677wrb/vLL
L7ZOnTrWWmvT09NtRESEzcrKKlyfnp5ua9SoYa11/u716tWzR48eLVw/depUe/nll1trrb3++uvt
3XffbTMzM8uMz9rS/+8LHq9U3lVP3s+sdcok9++Hv/+92Mrpmje+0ly+/p+3l+grenGNOnXqMHPm
TCZOnEhMTAxXXXUVa9eu9er1oqOjAcjMzDxpXWZmZuH64q8JziX8ij5W9HJ+W7Zs4ciRI8TExBAV
FUWjRo3405/+xG+//Vbq9ioiLy+PBx54gLZt29KwYUM6duyItbawt33LLbfw0UcfcfjwYZKTk7n4
4otLHK4qfhnCiIgIWrRoccJB5/Lm1+/duzfvv/8+2dnZzJ8/n88//5znn38ecCqjLr/88sJr6559
9tkAhd+qIiIiTrjMYVFbtmzh4MGDNGnSpPA9vPfee8nOzgbglVdeITc3l7POOovu3bszffp0b98+
n1CS97OXX4avvoKPPioyDg+qjQ9x1ssPiOLDNxdffDHz5s0jKyuLM844o7BEsLyDrmeccQYtW7bk
/fffPymODz74gIsuuqjU14yJiWHr1q2F94tezi82NpbatWuzc+dOdu3aRU5ODrt37y68CLg3sZVl
6tSpfPXVVyxYsIDdu3eTnp5eGDc4lUpdu3Zlzpw5vPPOOwwfPrzE7RS/DGF+fj7btm07IbFXJM7z
zjuPQYMGsXr1asD5gJg/f37hB3dOTg65ubmFHzhlbTs2Npb69euf8Nzdu3ezrGCiwZiYGKZMmUJm
Ziavvvoq//d//0dGRobXsZ4qJXk/mjnTqab57DNo2LDYyrQ0OHAA+vRxJTbxj7KSf3Z2NnPmzOHA
gQPUqFGDevXqFVZ3lHcZPnDGjZ9++mlmzJiBx+MhKyuLUaNGsW/fvhPGj4u7/vrree2119i2bRs5
OTk899xzheuaN2/OJZdcwn333ce+ffuw1vLLL7/wzTffVOK3P9m+ffuoXbs2jRo1Yv/+/SWO6Q8f
PpynnnqKjRs3ctVVV5W4naFDh/LRRx+xcOFCjh49yrPPPkt0dDTnnHOOV3GkpqYyderUwm8oa9as
Ye7cuYUHeUePHs2YMWMKk292djYpKSmFzy/p71r0g6pXr1489NBD7N+/H2stGzZsYNGiRYBzrODY
N7AGDRpgjKFatWpexe0LSvJ+MmcO3H23UzxT4rdd1caHLG8v31e8XX5+PuPHj6dFixZER0fzzTff
MHHiRKD8y/CBk6z//e9/M378eKKjo+ncuTMej4dFixbRqFGjUmO67bbbuPTSS+nWrRs9evTgmmLX
Dn777bc5fPgwZ555JlFRUVx33XVkZWWV+z54Y9SoUURHR9O8eXO6devGBRdccFKb6667jg0bNjB0
6NATKlaK6tKlC1OmTOH222+nadOmfP3118yePbvwQ7K8XnyjRo2YNWsWnTt3JjIykkGDBjF8+HDu
ueceAMaMGcPFF19M//79adCgAX369GHlypWFzy9p+0UfS05OZvfu3XTo0IHGjRszbNiwwuGaxYsX
c8455xAZGcnQoUN56623iImJKeed8x1NUOYHycnORUBSUqBHjxIaeDzQogUsXw6tWwc6vJCgCcqq
DmstrVq1YubMmfTu3dvtcFylCcpCwFtvwYMPwpdflpLgwcn+XbsqwYvg1MY3aNCgyid4f9F88j6S
l+ecxfruu7BgAZx+ehmNp01zhmpEqrjzzz+fzZs3k5yc7HYoYUvDNT7w669w442Qnw8zZkCTJmU0
3rHj+LzxKp0slYZrpCrScE0Q+uYbZ1imRw/4/PNyEjzAO+/A4MFK8CISEBquqaRdu2DMGKc8cuJE
KKXy60THauMnTPB3eCIigHryFXb0qHPBj06doHZtWLPGywQPmjdeRAJOPXkvHTnijLQ8/TTExcHH
H8N551VwI6qN91pcXJzP5jwXCRVFp27wFa8OvBpjBgKv4PT8p1hrnyuhzWvAZUAukGCt/b6ENiF3
4HXTJqfnPnUqtGsH48ZBCedzlO9YbfyyZZpWWEQqxK8HXo0xEcAE4FKgE3CDMaZDsTaXAW2tte2A
0cAblQkmWEyfnsqrr8KAAc4B1Zwc5wzWr76qZIIHv8wbn5qa6rNt+ZPi9J1QiBEUZzDxZtygJ7De
WrvZWnsEmAEMKtZmEPA2gLV2CdDAGFPylG1B5sgRWLXKOYlp1Cg44wwYPTqVVavgzjudSsfXXoPu
3U/xhfwwGVmo/IMqTt8JhRhBcQYTb8bkWwBbi9zPwEn8ZbXZVvDYjlOK7hRY64yQ5OQ4lTA7dzqX
3cvIcJZffoH0dGc4pnVrZ3y9Vy9nvpmPPoIKXgCnbFlZ8O23znwHIiIBFPADryVVohQdpi9+u+i0
3/n5x5e8PKfS5ehRpzfu8TjLoUNOAcv+/c7xzUaNICrKWWJioGVLZ+ndGzp2dM5MrVXrxHg+/tjH
v/SxeePr1fPxhkVEylbugVdjTC8g0Vo7sOD+WJyrlDxXpM0bwNfW2pkF99OBC621O4ptK7SOuoqI
BInKHnj1pie/DDjdGBMHZALDgBuKtZkD3AnMLPhQ2F08wZ9KkCIiUjnlJnlrbZ4x5i5gHsdLKH8y
xox2VttJ1tpPjTGXG2M24JRQjvRv2CIi4o2ATlAmIiKB5ZdTL40xA40x6caYdcaYMaW0ec0Ys94Y
870x5lQLFCulvDiNMTcaY34oWBYaY7oEY5xF2p1rjDlijLk6kPEVvLY3f/N4Y8xKY8xqY8zXgY6x
IIby/uaRxpg5Bf+XPxpjElwIE2PMFGPMDmPMqjLauLoPlRdjEO0/5b6XBe1c238KXt+bv3nF9yFr
rU8XnA+ODUAcUAP4HuhQrM1lwNyC2+cB//V1HD6KsxfQoOD2wGCNs0i7r4AU4OpgixFoAKwBWhTc
jw7G9xJ4GHj2WIzATqC6C7H2AboDq0pZHwz7UHkxur7/eBNnkf8NV/afCryfldqH/NGTD5WTp8qN
01r7X2vtnoK7/8Wp/Q80b95PgLuBWUB2IIMr4E2MNwIfWGu3AVhrfwtwjOBdnBaoX3C7PrDTWns0
gDE6QVi7EMgpo4nr+1B5MQbJ/uPNewnu7j+AV3FWah/yR5Iv6eSp4n/c0k6eCiRv4izqVuAzv0ZU
snLjNMacBgy21k4E3Khg8ua9bA9EGWO+NsYsM8YMD1h0x3kT5wTgTGPMduAH4J4AxVZRwbAPVYRb
+0+5gmD/8Val9iHNQukFY0w/nIqhPm7HUopXgKLjy8H4j1odOBvoD9QFFhtjFltrN7gb1kkuBVZa
a/sbY9oCXxhjulpr97sdWKjS/uMzldqH/JHktwGtitxvWfBY8Tax5bTxN2/ixBjTFZgEDLTWlveV
zx+8ibMHMMM4c/NGA5cZY45Ya+cEUYwZwG/W2kPAIWPMN0A3nDHyQPEmzpHAswDW2p+NMRuBDsDy
gETovWDYh8oVBPuPN9zef7xVuX3IDwcPqnH84FZNnINbHYu1uZzjB4164c5BI2/ibAWsB3oFOr6K
xFms/VQCf+DVm/eyA/BFQds6wI/AmUEY5z+BcQW3m+EMiUS59LdvDfxYyjrX9yEvYnR9//EmzmLt
Ar7/VOD9rNQ+5POevA2Rk6e8iRN4HIgCXi/4lD9irS0+OVswxHnCUwIZn7cxWmvTjTGfA6uAPGCS
tfZ/wRYn8DSQVKSM7SFr7a5AxglgjHkXiAcaG2O2AONwPpiCZh8qL0aCYP/xMs6iXDtxyIu/eaX2
IZ0MJSISxnQdOhGRMKYkLyISxpTkRUTCmJK8iEgYU5IXEQljSvIiImFMSV5EJIwpyYuIhLH/D7vc
npPUcqeMAAAAAElFTkSuQmCC
">
</img></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Example-Problem:-Actin-Polymerization">Example Problem: Actin Polymerization<a class="anchor-link" href="#Example-Problem:-Actin-Polymerization">¶</a></h2><p>Let's say we want to model the <a href="https://en.wikipedia.org/wiki/Actin#Assembly_dynamics">polymerization of actin</a> from barbed ends <em>in-vitro</em>. This is described by a very simple differential equation:</p>
<p>$\frac{dFa(t)}{dt} = k_{on}*N_b*Ga(t) - k_{off}*N_b$</p>
<p>where $Fa$ is the amount of filamentous (polymerized) actin, $Ga$ is the amount of globular (soluble) actin, $N_b$ is the amount of barbed ends (filaments from which actin can grow) and $k_{on} , k_{off}$ are the 1st and 0th order binding and unbinding parameters. If we are working in a system with excess ATP, and where the total amount of actin is conserved ($At = Fa + Ga$), this has an exact analytical solution, which we could solve using integrating factors - or, since we are lazy, just using SymPy.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sympy</span> <span class="k">import</span> <span class="o">*</span>
<span class="n">init_printing</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">At</span><span class="p">,</span> <span class="n">Nb</span><span class="p">,</span> <span class="n">k_on</span><span class="p">,</span> <span class="n">k_off</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="n">symbols</span><span class="p">(</span><span class="s1">'At Nb k_on k_off t'</span><span class="p">,</span> <span class="n">positive</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">Fa</span> <span class="o">=</span> <span class="n">Function</span><span class="p">(</span><span class="s1">'Fa'</span><span class="p">)(</span><span class="n">t</span><span class="p">)</span>
<span class="n">Ga</span> <span class="o">=</span> <span class="n">At</span> <span class="o">-</span> <span class="n">Fa</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">eq</span> <span class="o">=</span> <span class="n">Eq</span><span class="p">(</span><span class="n">k_on</span><span class="o">*</span><span class="n">Ga</span><span class="o">*</span><span class="n">Nb</span> <span class="o">-</span> <span class="n">k_off</span><span class="o">*</span><span class="n">Nb</span><span class="p">,</span> <span class="n">diff</span><span class="p">(</span><span class="n">Fa</span><span class="p">,</span> <span class="n">t</span><span class="p">))</span>
<span class="n">sol</span> <span class="o">=</span> <span class="n">dsolve</span><span class="p">(</span><span class="n">eq</span><span class="p">)</span>
<span class="n">sol</span><span class="o">.</span><span class="n">simplify</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[6]:</div>
<div class="output_latex output_subarea output_execute_result">
$$\operatorname{Fa}{\left (t \right )} = \frac{1}{k_{on}} \left(At k_{on} - k_{off} + e^{k_{on} \left(C_{1} - Nb t\right)}\right)$$
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>This solution has an integration constant. Assume that Fa(0) = 0 (meaning, at time zero, all actin is in soluble form)</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Solve for initial condition of 0 F-Actin at t=0</span>
<span class="n">initial_cond</span> <span class="o">=</span> <span class="n">solve</span><span class="p">(</span><span class="n">sol</span><span class="o">.</span><span class="n">rhs</span><span class="o">.</span><span class="n">subs</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="s1">'C1'</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">sol</span> <span class="o">=</span> <span class="n">sol</span><span class="o">.</span><span class="n">rhs</span><span class="o">.</span><span class="n">subs</span><span class="p">(</span><span class="s1">'C1'</span><span class="p">,</span> <span class="n">initial_cond</span><span class="p">)</span>
<span class="n">fact_timecourse</span> <span class="o">=</span> <span class="n">lambdify</span><span class="p">([</span><span class="n">At</span><span class="p">,</span> <span class="n">k_off</span><span class="p">,</span> <span class="n">k_on</span><span class="p">,</span> <span class="n">Nb</span><span class="p">,</span> <span class="n">t</span><span class="p">],</span>
<span class="n">sol</span><span class="o">.</span><span class="n">simplify</span><span class="p">(),</span> <span class="n">modules</span><span class="o">=</span><span class="s1">'numpy'</span><span class="p">)</span>
<span class="c1"># We take advantage of SymPy again to obtain the gradient</span>
<span class="c1"># of the function wrt the number of barbed ends</span>
<span class="n">fact_grad</span> <span class="o">=</span> <span class="n">lambdify</span><span class="p">([</span><span class="n">At</span><span class="p">,</span> <span class="n">k_off</span><span class="p">,</span> <span class="n">k_on</span><span class="p">,</span> <span class="n">Nb</span><span class="p">,</span> <span class="n">t</span><span class="p">],</span>
<span class="n">diff</span><span class="p">(</span><span class="n">sol</span><span class="p">,</span> <span class="n">Nb</span><span class="p">)</span><span class="o">.</span><span class="n">simplify</span><span class="p">(),</span> <span class="n">modules</span><span class="o">=</span><span class="s1">'numpy'</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">timesteps</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.01</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span>
<span class="n">simulation</span> <span class="o">=</span> <span class="n">fact_timecourse</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="mf">0.0001</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">timesteps</span><span class="p">,</span> <span class="n">simulation</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Time'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'F-Actin'</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[8]:</div>
<div class="output_text output_subarea output_execute_result">
<pre><matplotlib.text.text at 0x113e86710></pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAGfdJREFUeJzt3XuQXHWd9/H3N0C4JISbGjDhIndhV0E0XIwyK1sgoLDr
pXTX9bqulCXo+lSpaLkP1Jb46JbLIyz6WBRBAVEQXCEChSkWpgBLMUBCuIQQ5H4LChIIgZBJvs8f
p4d0hslMp9OnT5+e96vqVJ9z5nT39xzCfOb3+51LZCaSJG2sSVUXIEmqJwNEktQWA0SS1BYDRJLU
FgNEktQWA0SS1JZSAyQiZkbE9RFxd0TcGRFf3MB2Z0fE0ohYGBEHlVmTJKkzNi/584eA/5WZCyNi
KnBbRMzLzHuHN4iIY4G9MnOfiDgU+BFwWMl1SZI2UaktkMx8KjMXNuZXAIuBGSM2OxG4sLHNLcB2
ETG9zLokSZuua2MgEbEHcBBwy4gfzQAebVp+nNeGjCSpx3QlQBrdV5cDX2q0RCRJNVf2GAgRsTlF
eFyUmVeOssnjwK5NyzMb60Z+jjftkqQ2ZGaU8bndaIGcD9yTmWdt4OdzgU8ARMRhwHOZuWy0DTPT
KZPTTjut8hp6ZfJYeCw8FmNPZSq1BRIR7wQ+BtwZEQuABL4B7A5kZp6bmddExHERcT/wIvDpMmuS
JHVGqQGSmb8FNmthu5PLrEOS1HleiV5DAwMDVZfQMzwW63gs1vFYdEeU3UfWKRGRdalVknpFRJAl
DaKXfhaWpO7IhLVri2nk/PDy8Pxoy83rhj9v5DS8vvnnrawb7XWs+U5sN9rxaUc77+v237pV/W1t
gGjCyoRXXoGXXoKVK4vXkfOrVsHLLxevzfOvvLLhafXqYhoaeu3r8LRmzWvn16xZf1q7dv354eXR
5od/gUyaBBEbfm2eRq4buQyvfU/z+uaft7JutNex5jux3Uhj/Wws7byv3e9qV7e/DwwQ1dTatbB8
OTzzzLrpueeKdSOn55+HF16AF1+EFSvWnwC22aaYtt66mJrnt9wSttqqeG2enzy5eJ06tZifPBm2
2GLd6xZbwOabrz8/vLzZZuuWh+c32+y106RJr10eXjc83zxV8QtEva/MfxeOgahnZMKf/gSPPQZP
PQVPPlm8Nk9PP70uLKZOhZ12Wjdtvz1st93o07bbwpQpxXuGpylTil/4Uj8rcwzEAFHXZMKf/wz3
3QdLl8Ijj8DDD697ffTR4hf7zJmwyy4wfTrsvPP60+tfX4TFjjsWf81LGpsBggFSJ2vXwgMPwB13
wL33FoGxZEnxmgn77Qd77w177AG77w677Va87rpr0SqQ1DkGCAZIr3rlFbjnHliwoJgWLiyCY/vt
4aCD4M1vhn33LUJj333hda+zr17qJgMEA6RXvPgi/O53cOONxXTrrUUL4uCD100HHVR0M0mqngGC
AVKVl1+GwUG4/voiMO66qwiJd78b3vUuOOIImDat6iolbYgBggHSTc88A1dfDXPnwnXXwV/9FRxz
TBEas2YVp7dKqgcDBAOkbI88ApdfDldeWYxjHHUUnHACHH98ceaTpHoyQDBAyrBqVREYc+YUYxkf
+ACceGIRHrYypP7gvbDUUXfdVYTGxRcX3VOf/SxccYWhIWnjGCATxJo1cNll8P3vFxfsfepTxdlU
e+1VdWWS6soA6XNDQ3DJJfCtb8EOO8A3vgHHHVfcf0mSNoW/RvrU6tVFF9UZZxS3BTnnnGJsw4v4
JHWKAdJnhobgJz+Bb38b3vQmOO88OPLIqquS1I8MkD4yfz587nPF3WcvvBBmz666Ikn9zADpA8uX
wze/WQySf+978LGP2VUlqXyTqi5A7cssLv478MDiliP33AP/9E+Gh6TusAVSUw89BF/4Ajz4IPz8
58V9qSSpm2yB1NAvfgHveEdxI8OFCw0PSdWwBVIjQ0Nw6qnwy1/CvHnFXXElqSoGSE386U/wkY8U
j3G99VaftyGpenZh1cD8+fD2t8Nhh8E11xgeknqDLZAeN2dO0W117rnw939fdTWStI4B0qPWroVT
TimeBHjTTbD//lVXJEnrM0B60Nq1xS3W//hHuOUWHxkrqTcZID2mOTyuuQamTKm6IkkanYPoPcTw
kFQnBkiPMDwk1Y0B0gMMD0l1ZIBUzPCQVFcGSMVOOcXwkFRPnoVVofPOgxtuKE7VNTwk1U1kZtU1
tCQisi61tuIPf4D3va+4SHC//aquRlK/iggys5SnBNmFVYGnn4YPf7i4PYnhIamubIF02dAQHH00
HH44nHFG1dVI6ndltkAMkC77yldg0aJi0HyzzaquRlK/KzNAHETvol/8ongY1Pz5hoek+rMF0iV3
3QV/8zc+SVBSdzmIXnPPPQcf+ACceabhIal/2ALpgk9+srjO44c/rLoSSRONYyA1dv31MDgId99d
dSWS1Fl2YZXo5Zfh85+Hc86BqVOrrkaSOqvUAImIORGxLCIWbeDnR0bEcxFxe2P6Zpn1dNt3vgMH
Hgjvf3/VlUhS55XdhfVj4L+AC8fY5sbMPKHkOrpuyZKi5bFwYdWVSFI5Sm2BZObNwF/G2ayUwZ0q
ZRZdV//2bzBzZtXVSFI5emEM5PCIWBgRV0fEAVUX0wkXXQTLl8PJJ1ddiSSVp+qzsG4DdsvMlRFx
LHAFsO+GNj799NNfnR8YGGBgYKDs+jbaM8/AV78KV13l1eaSum9wcJDBwcGufFfp14FExO7ArzPz
LS1s+yBwSGY+O8rPanEdyGc/W1zzcdZZVVciSfW/DiTYwDhHREzPzGWN+VkUgfaa8KiLm26C3/zG
az4kTQylBkhE/AwYAHaKiEeA04DJQGbmucCHIuLzwGrgJeAjZdZTpldegZNOgu9/H6ZNq7oaSSqf
tzLpkLPPhmuvhauvhui788ok1ZXPA6G3A+Tll2GvvWDuXDjkkKqrkaR1vBtvjzv//OIuu4aHpInE
FsgmeuUV2HtvuOwyOPTQqquRpPXZAulhF1wABxxgeEiaeGyBbILVq2HffeHii+GII6quRpJeyxZI
j/rpT2HPPQ0PSROTLZA2DQ3Bm98M550HRx5ZdTWSNDpbID3okkvgjW80PCRNXLZA2rBmTfGgqB/8
AI46qupqJGnDbIH0mMsug512gve8p+pKJKk6Vd/OvXbWroVvfQu+9z1vWSJpYrMFspF+9SvYZhs4
5piqK5GkatkC2Qhr18K//zuccYatD0myBbIRbriheN758cdXXYkkVc8A2QjnnQef+5ytD0kCT+Nt
2bPPFledP/gg7LBDZWVI0kbxNN4ecPHFRdeV4SFJBQOkBZlF99U//3PVlUhS7zBAWnDbbfDCCzAw
UHUlktQ7DJAWzJkDn/kMTPJoSdKrHEQfx8qVMHMmLFpUvEpSnTiIXqHLL4fDDzc8JGkkA2Qcc+Y4
eC5Jo7ELawxLl8Ls2fDoozB5cle/WpI6wi6sipx/Pnz844aHJI3GFsgGDA3BrrvC9dcXj66VpDqy
BVKBa64pbl1ieEjS6AyQDXDwXJLGZhfWKJ58Eg44oBg8nzq1K18pSaWwC6vLLrgAPvhBw0OSxuIT
CUfILM6+uvDCqiuRpN5mC2SEO++E1avh0EOrrkSSepsBMsLcuXDiiT51UJLGY4CMcOWVRYBIksbm
WVhNHn8c/vqvYdky2GKLUr9KkrrCs7C65Kqr4NhjDQ9JaoUB0sTuK0lqXUtdWBHxAeC7wBuAaEyZ
mdPKLW+9GkrtwlqxAnbZBR57DLbbrrSvkaSuKrMLq9XrQP4DeH9mLi6jiF4wb17x4CjDQ5Ja02oX
1rJ+Dg+w+0qSNlarXVhnATsDVwCrhtdn5n+XV9praiitC2toCHbeGW6/HXbbrZSvkKRK9EIX1jRg
JXB007oEuhYgZfrd74pnfxgektS6lgIkMz9ddiFVsvtKkjbemAESEV/NzP+IiP+iaHGsJzO/WFpl
XZJZBMill1ZdiSTVy3gtkOGB81vLLqQqS5bAyy/DwQdXXYkk1cuYAZKZv27MrszMy5p/FhEfLq2q
LrrySjjhBG+eKEkbq9XTeL/e4rramTu3CBBJ0sYZbwzkWOA4YEZEnN30o2nA0HgfHhFzgPdRXEfy
lg1sczZwLPAi8KnMXNhi7Zvs6afh7rthYKBb3yhJ/WO8FsgTFOMfLwO3NU1zgWNa+Pwfj7VdI6D2
ysx9gJOAH7XwmR1z1VVw9NGw5Zbd/FZJ6g/jjYHcAdwREb8CXszMNQARsRkw7q/dzLw5InYfY5MT
gQsb294SEdtFxPTMXNbyHmyCuXPhQx/qxjdJUv9pdQxkHrB10/LWwHUd+P4ZwKNNy4831pXupZfg
hhvguOO68W2S1H9avRJ9q8xcMbyQmSsiYpuSatqg008//dX5gYEBBjZh8OK66+Btb4Mdd9z0uiSp
VwwODjI4ONiV72r1Xli/BU7JzNsby4cA52Tm4S28d3fg16MNokfEj4AbMvPSxvK9wJGjdWF1+l5Y
//IvcMAB8OUvd+wjJann9MITCf8VuCwiboqIm4FLgVNafO/w80NGMxf4BEBEHAY8143xj0y49lo4
/viyv0mS+ler98KaHxH7A/s1Vi1p5X0R8TNgANgpIh4BTgMmFx+Z52bmNRFxXETcT3Eab1fuufXQ
Q8UdePfZpxvfJkn9qdUxEDJzdUTcDbwH+DLF9R3Tx3nPP7bwuSe3WkOn3HQTvPvdXn0uSZuipS6s
iDisccHfw8CVwI3A/mUWVqYbbywCRJLUvjEDJCK+HRFLgTOARcDBwJ8y84LM/Es3CiyDASJJm268
LqzPAvcB/4/iTKpVEVHOYwG75Mkn4c9/hgMPrLoSSaq38bqwdgG+Bbwf+GNEXARsHREtj530mptu
gtmzYVKr559JkkY13q1M1gDXAtdGxJYUA+fbAI9HxP+0Mkjea+y+kqTOaPnv8MxclZm/zMwPAvtQ
BEvtDJ+BJUnaNC1dib7eGyKuysz3lVTPWN+7yVeiP/ss7LEHPPMMbLFFZ+qSpF7WC1eiN+vKzQ7L
8NvfwqGHGh6S1AntBMiCjlfRJY5/SFLnjHcdyG4j12XmZ8orp1wGiCR1zngtkCuGZyLilyXXUqoV
K4rH186aVXUlktQfxguQ5oGXPcsspGy//z0cfDBsvfX420qSxjdegOQG5mvnxhvhXe+qugpJ6h/j
BchbI+L5iHgBeEtj/vmIeCEinu9GgZ3i+IckddZGXwdSlU25DmTVKthpJ3jiCZg2rcOFSVIP67Xr
QGpn/nzYf3/DQ5I6aUIEyE03Of4hSZ02IQLE8Q9J6ry+HwMZGirGP+6/H17/+hIKk6Qe5hjIJrjj
Dpg50/CQpE7r+wCx+0qSyjEhAsQBdEnqvL4eA8ksuq4WLIBddy2pMEnqYY6BtGnx4uLaD8NDkjqv
rwPE8Q9JKk9fB8jNN8Ps2VVXIUn9qa8D5Pbb4e1vr7oKSepPfTuIvnJlcQHh8uUweXKJhUlSD3MQ
vQ133lncQNHwkKRy9G2ALFhQPIFQklQOA0SS1BYDRJLUlr4cRB8aKi4gXLYMtt225MIkqYc5iL6R
liyBGTMMD0kqU18GiN1XklQ+A0SS1BYDRJLUlr4bRM+EHXcs7sS7885dKEySepiD6BvhkUdgq60M
D0kqW98FiN1XktQdBogkqS0GiCSpLX0XIAsXwkEHVV2FJPW/vgqQZ54pnv+x555VVyJJ/a+vAmTB
AnjrW2FSX+2VJPWmvvpV6/iHJHWPASJJakvpARIR742IeyPivoj42ig/PzIinouI2xvTN9v9LgfQ
Jal7Ni/zwyNiEnAOcBTwBDA/Iq7MzHtHbHpjZp6wKd+1ciU89BAccMCmfIokqVVlt0BmAUsz8+HM
XA1cApw4ynabfJ+WRYtg//1h8uRN/SRJUivKDpAZwKNNy4811o10eEQsjIirI6KtNoTjH5LUXaV2
YbXoNmC3zFwZEccCVwD7jrbh6aef/ur8wMAAAwMDry4bIJIEg4ODDA4OduW7Sr2de0QcBpyeme9t
LJ8KZGZ+d4z3PAgckpnPjlg/5u3cZ82CM8+E2bM7U7sk9YM63859PrB3ROweEZOBjwJzmzeIiOlN
87MoQu1ZNsLQENx9d3ERoSSpO0rtwsrMNRFxMjCPIqzmZObiiDip+HGeC3woIj4PrAZeAj6ysd9z
770wYwZsu20nq5ckjaUvnkh40UVw1VVw6aVdLkqSelydu7C6wgsIJan7+iJAPANLkrqv9l1YmbDT
TrB4MUyfPsobJWkCswtrDA8/DFttZXhIUrfVPkDsvpKkatQ+QBYt8voPSapC7QNkyZLiJoqSpO6q
fYDcdx/sO+qdsyRJZar1WViZMG1aMZC+444VFSZJPcyzsDbgqaeKM7AMD0nqvloHyJIlsN9+VVch
SRNTrQPE8Q9Jqk7tA8QWiCRVo9YBsmSJLRBJqkqtA8QWiCRVp7an8a5eXTxAavly2HLLCguTpB7m
abyjePDB4imEhockVaO2AeL4hyRVq7YB4viHJFWrtgFiC0SSqlXbALEFIknVqm2A2AKRpGrVMkCe
f76YZsyouhJJmrhqGSD33Qf77AOTalm9JPWHWv4KdvxDkqpXywBx/EOSqlfLALEFIknVq2WA2AKR
pOrV7maKmcVNFB97DLbfvuqqJKm3eTPFJk88AVOmGB6SVLXaBYjjH5LUG2oXII5/SFJvqF2A2AKR
pN5QuwCxBSJJvaF2AWILRJJ6Q61O4121Kpk2rbiR4uTJVVckSb3P03gbHngAdt3V8JCkXlCrAHH8
Q5J6R60CxPEPSeodtQoQWyCS1DtqFSC2QCSpd9QqQGyBSFLvqNVpvFOmJC+8AFHKCWmS1H88jbdh
330ND0nqFbUKEMc/JKl31CpAHP+QpN5ReoBExHsj4t6IuC8ivraBbc6OiKURsTAiDtrQZ9kCkaTe
UWqARMQk4BzgGOBA4B8iYv8R2xwL7JWZ+wAnAT/a0OfZAikMDg5WXULP8Fis47FYx2PRHWW3QGYB
SzPz4cxcDVwCnDhimxOBCwEy8xZgu4iYPtqHGSAF/+dYx2OxjsdiHY9Fd5QdIDOAR5uWH2usG2ub
x0fZBoBp0zpamyRpE9RqEF2S1DtKvZAwIg4DTs/M9zaWTwUyM7/btM2PgBsy89LG8r3AkZm5bMRn
1eOKR0nqMWVdSLh5GR/aZD6wd0TsDjwJfBT4hxHbzAW+AFzaCJznRoYHlHcAJEntKTVAMnNNRJwM
zKPoLpuTmYsj4qTix3luZl4TEcdFxP3Ai8Cny6xJktQZtbkXliSpt9RiEL2VixHrLCJmRsT1EXF3
RNwZEV9srN8hIuZFxJKI+E1EbNf0nq83Lr5cHBFHN61/W0Qsahyr71exP50QEZMi4vaImNtYnpDH
IiK2i4jLGvt2d0QcOoGPxZcj4q7GflwcEZMnyrGIiDkRsSwiFjWt69i+N47lJY33/C4idmupsMzs
6Yki5O4Hdge2ABYC+1ddV4f3cWfgoMb8VGAJsD/wXeCrjfVfA77TmD8AWEDRBblH4/gMtyZvAd7R
mL8GOKbq/WvzmHwZ+Ckwt7E8IY8F8BPg0435zYHtJuKxAN4IPABMbixfCnxyohwLYDZwELCoaV3H
9h34PPDDxvxHgEtaqasOLZBWLkastcx8KjMXNuZXAIuBmRT7eUFjswuAv2vMn0DxH3goMx8ClgKz
ImJnYNvMnN/Y7sKm99RGRMwEjgPOa1o94Y5FREwD3pWZPwZo7ONyJuCxaNgMmBIRmwNbU1wzNiGO
RWbeDPxlxOpO7nvzZ10OHNVKXXUIkFYuRuwbEbEHxV8avwemZ+OMtMx8CnhDY7MNXXw5g+L4DKvr
sfq/wFeA5gG6iXgs3gT8OSJ+3OjOOzcitmECHovMfAL4T+ARiv1anpnXMQGPRZM3dHDfX31PZq4B
nouIHccroA4BMmFExFSK9P9SoyUy8gyHvj/jISKOB5Y1WmRjnbrd98eCogvibcAPMvNtFGcpnsrE
/HexPcVfybtTdGdNiYiPMQGPxRg6ue8tXTZRhwB5HGge0JnZWNdXGs3yy4GLMvPKxuplw/cFazQ/
n26sfxzYtentw8dkQ+vr5J3ACRHxAPBz4D0RcRHw1AQ8Fo8Bj2bmrY3lX1IEykT8d/G3wAOZ+Wzj
L+RfAUcwMY/FsE7u+6s/i4jNgGmZ+ex4BdQhQF69GDEiJlNcjDi34prKcD5wT2ae1bRuLvCpxvwn
gSub1n+0cebEm4C9gT80mrHLI2JWRATwiab31EJmfiMzd8vMPSn+W1+fmR8Hfs3EOxbLgEcjYvg2
okcBdzMB/11QdF0dFhFbNfbhKOAeJtaxCNZvGXRy3+c2PgPgw8D1LVVU9dkFLZ6B8F6KM5OWAqdW
XU8J+/dOYA3FGWYLgNsb+7wjcF1j3+cB2ze95+sUZ1csBo5uWn8IcGfjWJ1V9b5t4nE5knVnYU3I
YwG8leKPqIXAf1OchTVRj8Vpjf1aRDHgu8VEORbAz4AngFUUYfppYIdO7TuwJfCLxvrfA3u0UpcX
EkqS2lKHLixJUg8yQCRJbTFAJEltMUAkSW0xQCRJbTFAJEltKfuJhFLtNO4B9D8Ut4bYheIanacp
LuJ6MTNnV1ie1DO8DkQaQ0T8b2BFZp5ZdS1Sr7ELSxrbejeVi4gXGq9HRsRgRFwREfdHxP+JiH+M
iFsi4o7GLSSIiNdFxOWN9bdExBFV7IRUBgNE2jjNTfa3AJ+jeIDPx4F9MvNQYA5wSmObs4AzG+s/
xPrPOJFqzTEQqX3zM/NpgIj4I8X9iKC419BAY/5vgTc3bl4HMDUitsnMlV2tVCqBASK1b1XT/Nqm
5bWs+38rgEOzeJqm1FfswpI2TksP2mkyD/jSq2+OeGtny5GqY4BIG2dDpy1uaP2XgLc3BtbvAk4q
pyyp+zyNV5LUFlsgkqS2GCCSpLYYIJKkthggkqS2GCCSpLYYIJKkthggkqS2GCCSpLb8f6UCEeUX
sfxfAAAAAElFTkSuQmCC
">
</img></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>What if we didn't actually know the number of barbed ends in solution, and wanted to estimate it on the basis of F-Actin time course data? That's very easy using SciPy and SymPy!</p>
<p>This is just a simple least squares minimization problem:</p>
<p>$\underset{x}{\arg\min} \sum_i(F(x)_i - y_i)^2$</p>
<p>Where $F(x)_i$ is our simulation of actin dynamics, $x$ is our unknown parameter (in this case, the number of barbed ends - we presume we know everything else) and $y_i$ is the experimental data.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">fact_residuals</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">'''</span>
<span class="sd"> Returns the residuals between the simulation calculated</span>
<span class="sd"> with nb == p[0] and the original simulation with the known</span>
<span class="sd"> value of nb</span>
<span class="sd"> '''</span>
<span class="n">nb</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">new_sim</span> <span class="o">=</span> <span class="n">fact_timecourse</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
<span class="n">residuals</span> <span class="o">=</span> <span class="n">new_sim</span> <span class="o">-</span> <span class="n">data</span>
<span class="k">return</span> <span class="n">residuals</span>
<span class="k">def</span> <span class="nf">fact_jac</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">'''</span>
<span class="sd"> Returns the jacobian: The gradient at every timestep</span>
<span class="sd"> with respect to nb. Since we are only optimizing a</span>
<span class="sd"> single parameter, this has an extra axis.'''</span>
<span class="n">nb</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">return</span> <span class="n">fact_grad</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">scipy.optimize</span> <span class="k">import</span> <span class="n">leastsq</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">leastsq</span><span class="p">(</span><span class="n">fact_residuals</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="n">args</span><span class="o">=</span><span class="p">(</span><span class="n">simulation</span><span class="p">,),</span> <span class="n">full_output</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">col_deriv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">Dfun</span><span class="o">=</span><span class="n">fact_jac</span><span class="p">)</span>
<span class="n">out</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[9]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>array([ 0.0001])</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Working-with-arbitrary-units:">Working with arbitrary units:<a class="anchor-link" href="#Working-with-arbitrary-units:">¶</a></h2><p>But, suppose that instead of having $y_i$ in units of concentration, we measure $y_i$ using a fluorescence assay and our units are arbitrary. In practice, actin polymerization is almost always measured using <a href="https://en.wikipedia.org/wiki/Pyrene">pyrene</a> actin, a specially labeled form of actin that becomes fluorescent when it polymerizes.</p>
<p>Now, we can no longer directly minimize the difference between our simulation and the experimental data, since our simulation is in units of concentration, and our measurents are in arbitrary units. One option is to explicitly add a parameter to our model. We can simply define a new function, $G(x)$:</p>
<p>$G(x) = x[0] * f(x[1:])$</p>
<p>which takes an extra parameter, and scales the simulation. This however adds a parameter to the model, and, in my experience, makes parameter much slower.</p>
<h2 id="Implicit-Scale-Factors:">Implicit Scale Factors:<a class="anchor-link" href="#Implicit-Scale-Factors:">¶</a></h2><p>An alternative way is to write out the minimization like so (we are assuming <a href="https://en.wikipedia.org/wiki/Homoscedasticity">homoscedasticity</a> to simplify the expression and ignore the variance of each individual point):</p>
<p>$\underset{x}{\arg\min} \sum_i (\beta F(x)_i - y_i)^2$</p>
<p>At this point - we notice that, for a given set of parameters $x$, our loss function implicitly defines an optimal scaling factor $\beta$ - it's the scaling factor that minimizes the residuals, given a simulation $F(x)$ and data $y$.</p>
<p>To find the optimal scale factor, we derive our loss function with respect to $\beta$</p>
$$
\frac{d} {d \beta} \sum_i (\beta F(x)_i - y_i)^2 = 0 \\
$$<p>and solve (the best reference I've found for this is <a href="http://www.lassp.cornell.edu/sethna/pubPDF/GutenkunstPhD.pdf">Ryan Gutenkust's PhD thesis</a> and the corresponding implementation in <a href="https://sourceforge.net/p/sloppycell/git/ci/master/tree/Model_mod.py#l568">SloppyCell</a>:</p>
$$
\beta = \frac{\sum_i F(x)_i y_i }{\sum_i F(x)_i^2 } \\
$$<h2 id="Updating-the-Jacobian:">Updating the Jacobian:<a class="anchor-link" href="#Updating-the-Jacobian:">¶</a></h2><p>However, now when we calculate the Jacobian, we also have to consider the effect that varying the parameter will have on the scaling factor:</p>
$$
\frac{d}{dx} (\beta(x) F(x)) = \frac{d\beta(x)}{dx}F(x) + \frac{dF(x)}{dx}\beta(x)
$$<p>$ \frac{dF(x)}{dx}$ is the old Jacobian. Now we need to calculate $\frac{d\beta(x)}{dx}$. To obtain that, we derive the equation for $\beta$ with respect to $x$.</p>
$$
\frac{d\beta}{dx} = \frac{d}{dx} \frac{ \sum_i \frac{dF(x)_i}{dx} y_i}{ \sum_i F(x)_i^2}
$$
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's write a quick and dirty implementation of the different functions.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">calculate_sf</span><span class="p">(</span><span class="n">sim</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Calculates the optimal scale factor (B) between</span>
<span class="sd"> simulated and experimental data.</span>
<span class="sd"> """</span>
<span class="n">sim_dot_exp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim</span> <span class="o">*</span> <span class="n">data</span><span class="p">)</span>
<span class="n">sim_dot_sim</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim</span> <span class="o">*</span> <span class="n">sim</span><span class="p">)</span>
<span class="k">return</span> <span class="n">sim_dot_exp</span> <span class="o">/</span> <span class="n">sim_dot_sim</span>
<span class="k">def</span> <span class="nf">calculate_sf_grad</span><span class="p">(</span><span class="n">sim</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">sim_jac</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Calculates the gradient of the scale factor </span>
<span class="sd"> (dB/dx) with respect to the parameters being</span>
<span class="sd"> optimized.</span>
<span class="sd"> """</span>
<span class="n">sim_dot_exp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim</span> <span class="o">*</span> <span class="n">data</span><span class="p">)</span>
<span class="n">sim_dot_sim</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim</span> <span class="o">*</span> <span class="n">sim</span><span class="p">)</span>
<span class="n">jac_dot_exp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim_jac</span><span class="o">.</span><span class="n">T</span> <span class="o">*</span> <span class="n">data</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">jac_dot_sim</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">sim_jac</span><span class="o">.</span><span class="n">T</span> <span class="o">*</span> <span class="n">sim</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">sf_grad</span> <span class="o">=</span> <span class="p">(</span><span class="n">jac_dot_exp</span> <span class="o">/</span> <span class="n">sim_dot_sim</span> <span class="o">-</span> <span class="mi">2</span> <span class="o">*</span> \
<span class="p">(</span><span class="n">sim_dot_exp</span> <span class="o">*</span> <span class="n">jac_dot_sim</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">sim_dot_sim</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">sf_grad</span>
<span class="k">def</span> <span class="nf">scaled_fact_residuals</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Calculates the residuals between simulated data and</span>
<span class="sd"> experimental data after scaling the simulations using</span>
<span class="sd"> the scale factor.</span>
<span class="sd"> """</span>
<span class="n">nb</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">new_sim</span> <span class="o">=</span> <span class="n">fact_timecourse</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
<span class="n">beta</span> <span class="o">=</span> <span class="n">calculate_sf</span><span class="p">(</span><span class="n">new_sim</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span>
<span class="n">residuals</span> <span class="o">=</span> <span class="n">beta</span><span class="o">*</span><span class="n">new_sim</span> <span class="o">-</span> <span class="n">data</span>
<span class="k">return</span> <span class="n">residuals</span>
<span class="k">def</span> <span class="nf">scaled_fact_jac</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Calculates the jacobian of the simulation with</span>
<span class="sd"> respect to the parameter being optimized including</span>
<span class="sd"> the contribution of the scale factor:</span>
<span class="sd"> </span>
<span class="sd"> (d/dx B(x)F(x) = dB(x)/dx*F(x) + dF(x)/dx*B(x))</span>
<span class="sd"> """</span>
<span class="n">nb</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># We could write this using caching to avoid</span>
<span class="c1"># recalculating f(x) and B(x) every iteration.</span>
<span class="n">new_sim</span> <span class="o">=</span> <span class="n">fact_timecourse</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
<span class="n">beta</span> <span class="o">=</span> <span class="n">calculate_sf</span><span class="p">(</span><span class="n">new_sim</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span>
<span class="n">jac</span> <span class="o">=</span> <span class="n">fact_grad</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">beta_grad</span> <span class="o">=</span> <span class="n">calculate_sf_grad</span><span class="p">(</span><span class="n">new_sim</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">jac</span><span class="p">)</span>
<span class="k">return</span> <span class="n">beta_grad</span><span class="o">*</span><span class="n">new_sim</span> <span class="o">+</span> <span class="p">(</span><span class="n">jac</span><span class="o">*</span><span class="n">beta</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's test to see if the scale factor calculation works as we expect:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [13]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">nb</span> <span class="o">=</span> <span class="mf">0.0001</span>
<span class="n">new_sim</span> <span class="o">=</span> <span class="n">fact_timecourse</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">11.6</span><span class="p">,</span> <span class="n">nb</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
<span class="n">scaled_measures</span> <span class="o">=</span> <span class="n">simulation</span><span class="o">*</span><span class="mf">1.7</span>
<span class="n">sf</span> <span class="o">=</span> <span class="n">calculate_sf</span><span class="p">(</span><span class="n">new_sim</span><span class="p">,</span> <span class="n">scaled_measures</span><span class="p">)</span>
<span class="nb">print</span> <span class="p">(</span><span class="n">sf</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>1.7
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [14]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">timesteps</span><span class="p">,</span> <span class="n">new_sim</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'unscaled_sim'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">timesteps</span><span class="p">,</span> <span class="n">scaled_measures</span><span class="p">,</span> <span class="s1">'r-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'scaled_sim'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">timesteps</span><span class="p">,</span> <span class="n">new_sim</span><span class="o">*</span><span class="n">sf</span><span class="p">,</span> <span class="s1">'bo'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s1">'unscaled_sim*scale_factor'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[14]:</div>
<div class="output_text output_subarea output_execute_result">
<pre><matplotlib.legend.legend at 0x115febe48></pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVVX6wPHvQiWvIGCQICBijWP5S2u07GJQmdpMY01a
KmZqTbepJm2myySC0eQ04zSN1Yw546WLlGWlVuhoKZpN3kpLrXRURAQ1FfGuKLy/P/bhcIADHODc
4Lyf59kP++y1L2tvYL9nr7X2WkZEUEopFZiCfJ0BpZRSvqNBQCmlApgGAaWUCmAaBJRSKoBpEFBK
qQCmQUAppQJYrUHAGHOeMWaNMWaDMWaTMSbNyTrXGWOKjDFf26YJnsmuUkopd2pe2woicsYYkywi
J40xzYAvjDGLRGRtpVVXisgvPZNNpZRSnuBScZCInLTNnocVOJy9YWbclSmllFLe4VIQMMYEGWM2
APuApSKyzslqfY0xG40xnxhjurs1l0oppTzC1SeBUhHpBXQCrnByk/8KiBORnsArwHz3ZlMppZQn
mLr2HWSMSQVOiMiLNayTA1wuIoWVlmtHRUopVQ8i4pEid1daB3UwxoTa5lsB/YEfKq0T5TDfByu4
VAgAZUREJxHS0tJ8ngd/mfRa6LXQa1Hz5Em1tg4COgKvG2OCsILGXBHJMsbcb93TZTowxBjzIHAW
OAXc6bEcK6WUchtXmohuAi5zsvw1h/lXgVfdmzWllFKepm8M+0hSUpKvs+A39FqU02tRTq+Fd9S5
YrhBBzNGvHk8pZRqCowxiK8qhpVSSjVdGgSUUiqAaRBQSqkApkFAKaUCmCvvCSilVBU5Obmkps4m
P7+UmJggMjJGk5AQ7/U0f8mHJ/PoUV5+602U8oadO3dJSkq6JCVNlJSUdNm5c5ffpflLPuqTx507
d0li4uMCxwVE4LgkJj4uO3fu8mraihWr/CIfns8jIp66L3tqx04PpkFAVcOdNy9/+edvyjevlBFp
DsvFnp4yfKKkDJ9Y97RhqZIyLLXOaZ3jbnW+zZ0TJOXOCX6R5p48ahBQjUR9v2267ebVZbz88ufj
nP9j9X9IUq5/wHla7xGScvkw52ndbpGUn/zCeVrcDZISe73ztKhrJCXyauc3huArnW/T7jJJadvL
eVqr/5OUlj2cpwV3l5QW3Z2nNesmKc26OU8zF0mKuch5HrnM+TZ0lSSuqbTcmpK5RpK4tpq0a2tO
M/2cp5l+1aa15xd13sZKu67uaUH9JCmo7mnV5rFO+0PEQ/dlrRNQdVZTuWf//i+zY8ckoA1wgtWr
01i69BEA52lLHib1DzMclgO0YceOSaTecR+cLWbHjtlV0/r0h3Pn2FG0vGLazmc5tvN2h2XY0wrW
5CJBQc7T8ksQY5ynnY2oPq1tImKq2WfHnggGfqyaVhScAMVOtul+vTVi0xonab0GImLgSydpfQZb
t4ovnKRd9Strn587Set3h5W2wkkeQy+GI062SR5BTHQQzDlR6bxPEJ1yozXrNO2G+qWNuL7atPad
gynaVbdt6p02vH5p1eaxXvvzAE9FF2cT+iTQqNS1qCUlJd35N8c+KZLS41fO04J+Uv03r+g7JSku
xXnaZY9K0s/GOU2LirrN+bFS0qvPo5fTOneu5no0kjw2hiKrppVHzz0JaBAIcHUtovnlL3/n/MYQ
e70ktbvZ+Q274x2SFD/SeVq/Z9x+8xo8+DG/+Odvyjcvx7+d5OTqi/68keYv+fBkHj0ZBLTvoADm
rPgmMdEqvkmdMIs5mb+n8mNqpBnCj7Koyr6SL36A6JgWzFnypyrbpKRMAWDOnN85TcvIGF1tPqBq
MZKraampsykoKCU62nmzO1+n+Us+6ptH5T2e7DtIg0AAqK4Mf+TISc5vzJE3kX8omOyS5VX2FdVh
MPsPZlbdpgE3c0/dEJVqKjQIqHpz+m2/8wSWPn0xY59bTnbenCrbJPd8hOjEtsx5fwKVb/aDB09g
8+Zmbr+ZK6Wqp0FA1arO3/YvGASRkcz59vWqaS58q9ebuVLeo0FA1cjpt/3Yp1k6vA1jX9tM9pGP
qmyTnJzGjBlj611Eo5TyHg0CqkbVftu/8A6IiWFO9t+qpqVM4a230vRGr1Qj4MkgoC+LNSJOi3ya
GfK/2InTl5U6/YwZM8ayun9alW/7GRlWsU5CQjxvvZXm3RNRSvkNDQKNhNO3cT/4NUtbLCIm6irA
yVuH0UEkJMRbTT5Tpzh8239Ev+0rpQAtDmo0qi3yGfYCGc/fU2PZvlKqcdPioADitMhHSshf9j1O
i3z2G/22r5Sqt1qDgDHmPGAlEGxbf56ITHKy3lRgEFa5xGgR2ejmvDZ5Tot8FjzA0mafEBN7Hex1
XuQDWravlKqfWoeXFJEzQLKI9AJ6AoOMMX0c1zHGDAISReRC4H5gmicy29Slps6u2pvm8Wmk3vQg
GQtfIjExDSvGQnkF72hfZFUp1US4VBwkIidts+fZtqlcsD8YeMO27hpjTKgxJkpE9rstpwEgf/dZ
nBb5HGyuRT5KKY9wKQgYY4KAr4BE4FURWVdplRggz+Fzvm2ZBoFqVCj7jzZkXBtNzNcfA0+jRT5K
KW9x9UmgFOhljAkB5htjuovId/U5YHp6un0+KSmJpKSk+uymUXNa9v/eGGa+MJbVr1bfpl8pFRiy
s7PJzs72yrHq3ETUGJMKnBCRFx2WTQOWi8hc2+cfgOsqFwdpE1FLtc09bX326Bu8SilHPm0iaozp
AJwVkSPGmFZAf+BPlVZbCPwGmGuMuRIo0vqA6uXnnMJp2X9BqRb5KKW8qtbWQUBHYLkxZiOwBviP
iGQZY+43xtwHICJZQI4xZjvwGvCQx3Lc2GVnE7NhEeWtfMqUl/0rpZS36BvDHlSl8jf6FAlvvUHO
C3+h/7Mb9Q1fpZRLtBfRRshp987n3cPSz35LwtV9tfdOpZTLNAg0QjVV/mqZv1KqLjwZBLQQ2kPy
80uprvJXKaX8hQYBD4lhH1r5q5Tyd3pH8oSFC8n45n0SY55E+/pRSvkzrRNwt3nz4De/gY8/JqdD
pFb+KqUaTCuG/ViFZqDFu8nY+gkJny6Bnj19nTWlVBOhg8r4Kad9AHVqy9LQMBJ8nTmllHKB1gk0
gNP+//f8idTU2T7MlVJKuU6DQANoM1ClVGOnQaABYkJPos1AlVKNmd6t6uvECTK2ZpEY8Vu0GahS
qrHS1kH1IQLDhkGrVuRMTCd14uvaDFQp5THaRNTfTJ4M8+fDihXQsqWvc6OUauK0iaiPVXgXQPaS
8f1HJGz4SgOAUqrR0yBQC6fvAsQEs/TMWX0XQCnV6GnFcC2cvguQ/4K+C6CUahI0CNRC3wVQSjVl
GgRqERMThL4LoJRqqvROVouMJ4eQ2Pxu9F0ApVRTpE1Ea/Poo+Ts209qcHd9F0Ap5RP6noCvfPkl
3H47bN4M4eG+zo1SKkDpGMO+UFwM994LL72kAUAp1WTVGgSMMZ2MMcuMMVuMMZuMMY86Wec6Y0yR
MeZr2zTBM9n1osmTITERhg71dU6UUspjXHlZ7BwwXkQ2GmPaAl8ZY5aIyA+V1lspIr90fxZ94Lvv
4OWXYeNGMB55AlNKKb9QaxAQkX3APtv8cWPM90AMUDkINOq7ZXnXECXEbP6UjEd/S0KnTr7OllJK
eVSdKoaNMZ2BbOASETnusPw64H1gD5AP/F5EvnOyvV9WDDvrGiKxy0SWfvqotgJSSvmcX3QgZysK
mgf81jEA2HwFxInISWPMIGA+cJGz/aSnp9vnk5KSSEpKqmOW3c9p1xA7nyU1dQpvvZXmy6wppQJQ
dnY22dnZXjmWS08CxpjmwMfAIhH5uwvr5wCXi0hhpeV++SSQnJxGdvYkp8uXLau6XCmlvMkfmojO
BL6rLgAYY6Ic5vtgBZdCZ+v6I+0aQikVqGp9EjDGXA2sBDYBYpv+AMQDIiLTjTG/AR4EzgKngHEi
ssbJvvzySSAnJ5f+l6ay49g/sdcJJKaxdOkjWieglPI5fWPY07ZvJ+dnfUjt/wAFh1po1xBKKb+i
QcDTRo+GhARI00pgpZT/8YvWQU3W//4Hn3wC27f7OidKKeV1WvP57LPw6KMQGurrnCillNcFdnHQ
Dz9Av37WU0BIiK9zo5RSTvlDE9Gm6dln4bHHNAAopQJW4D4JfPcdJCdbTwHt2vk6N0opVS19EvCE
SZNg/HgNAEqpgBZQQSAnJ5eRIyeR3OdxRi78npyf3+LrLCmllE8FTHGQ055C9a1gpVQjoMVBbuC0
p9Adk0hNne3DXCmllG8FTBDIzy+lPACUaUNBQakvsqOUUn4hYIKA9hSqlFJVBcwdMCNjNImR4ykP
BFadQEbGaJ/lSSmlfC1gKoYBcnpfQWqrSyho3kl7ClVKNRrai6g7fP89XH897N4NLVr4Jg9KKVUP
2jrIHf71LxgzRgOAUko5CIwngdOnITYW1qyBLl28f3yllGoAfRJoqA8+gF69NAAopVQlgREEXnsN
7rvP17lQSim/0/SLg374AZKSrArh4GDvHlsppdxAi4MaoqxCWAOAUkpV0bSfBMoqhFevhsRE7x1X
KaXcSJ8E6uvDD6FnTw0ASilVjVqDgDGmkzFmmTFmizFmkzHm0WrWm2qM+Z8xZqMxpqf7s1oP06dr
hbBSStXAlSeBc8B4EbkY6Av8xhjTzXEFY8wgIFFELgTuB6a5Pad1kJOTy8hbHif5iyBGfrCJnJxc
X2ZHKaX8VvPaVhCRfcA+2/xxY8z3QAzwg8Nqg4E3bOusMcaEGmOiRGS/B/Jco/LBY54F2sA7J1i9
TgePUUopZ+pUJ2CM6Qz0BNZUSooB8hw+59uWeZ0OHqOUUq6r9UmgjDGmLTAP+K2IHK/vAdPT0+3z
SUlJJCUl1XdXTungMUqpxi47O5vs7GyvHMulIGCMaY4VAN4UkQVOVskHYh0+d7Itq8IxCHhC+eAx
joFAB49RSjUelb8gT5o0yWPHcvXOOBP4TkT+Xk36QmAUgDHmSqDIF/UBABnP3k1is7vRwWOUUqp2
tT4JGGOuBlKATcaYDYAAfwDiARGR6SKSZYy52RizHevuO8aTma5JwqEDLI3dQOpVf6Fgr9gGj9FK
YaWUcqbpvTH8zDNQUgJ/+pNnj6O8SsT6tZ45Uz4VF5f/LC6Gs2fLf1aezp0rnxw/l5RYk+O841Ra
WnW+tNS1SaTq57Kp8ue6TmXXxHG+Lsscr2tt83VJc/Z7q8vy2tJq4u5biw8HQaxi61bPvTHscsVw
o/HhhzBzpq9zEbBKS+HoUSgqsn6WTceOlc8fPw4nTlScTp4s/3n6NJw6Vf6zbN4Yqwuo886zprL5
4ODyqUWL8ik4GJo3t+YdfzpOzZqV/3ScgoPL54OCqs4HBVWdjClPM6ZqWtlU+XN9J6g6X5dlZRw/
Vzdfl7TKqkurzza1qe923tpfff30p57bd9MKAlu3WnefPn18nZMmQcS6af/4o/PpwAE4fBgKC8t/
Hj0KbdtCaKg1tWsHISHWVDbfti1EREBcHLRpA61bWz/L5lu2hFatrKlsvmVL62atlHKvpvVvNX8+
3Hqr9VVL1erMGcjJgR07IC8P9uypOOXnW4HgggsgMrLidOGF0LevdTMPC7Om8HDrxq83a6Uaj6b1
7/rhh/Dss77OhV8pLYWdO2HTJti2DbZvt276O3bAvn3Wt/HEROtnp07Qr5/1s2wKCfH1GSilPKnp
VAzn50OPHtadLUDHDjh0CDZssG74ZdP330OHDnDJJdCtG3Ttat30y278+q1dKf/nya6km84tYOFC
uPnmgAkAJSWwebM1VMKXX1rT3r3WUMo9esAVV8C991o3f/02r5SqTtMJAh9+2KS7jS4tha+/hsWL
YflyWLcOoqOtcvmrroLx4+Hii63WKUop5aqmURx0+DDEx0NBgdX0pIn48UdYssS68S9ZYhXrDBwI
N94IV15pVcQqpZo+LQ6qTVaWNZh8EwgAeXmQmQnvvWdV4l5/vXXj/+MfrTinlFLu1DSCwIcfWk1D
G6nDh2HePJgzx6rMvf12+Mtf4JprrBeclFLKUxp/cdCpU1ZD9u3b4fzz3btvDzp3zqrLfvNNWLYM
broJUlJg0CDrLVillCqjxUE1+fRTq0lMIwkAx47Bv/8Nf/87xMbC2LEwe7b1kpVSSnlb4w8CjaQo
aM8emDrV6tbohhvg3Xe1dwullO812v4VcnJyGTkijeQ3cxmZne+3g8l/+y3cdRf83/9ZPVyuWwdz
52oAUEr5h0ZZJ1A+mHzZWMLWwDH+NJj8vn3whz9YDZfGjbNeYQgL83WulFKNkSfrBBrlk4A/DyZ/
+jRMnmy9qXv++VbHpk8+qQFAKeWfGmWdgD8OJi8C778Pv/+9VU+9Zo3VP49SSvmzRhkE/G0w+W++
gUcfhSNHrIrf5GSfZEMppeqsURYHZWSMJjFyPL4eTL60FP76V+jf32rj/9VXGgCUUo1Lo6wYBsgZ
NoLU7UJByEW2weRHe7VSeN8+uPtuq91/ZiZ07uy1QyulAownK4YbbRDgoousDnYuvdQ9+6uDRYus
l7zuvRfS0rRPfqWUZ+kbw5UVFFgjqPTo4dXDnjljNft89114+22rzzqllGrMGmcQWLHCGgfRi2MJ
b98Od9xh9eS5caM1tq5SSjV2td5FjTEzjDH7jTHfVpN+nTGmyBjztW2a4P5sVpKdDddd5/HDlPnq
KyvmjB0LH3ygAUAp1XS48lV6FjCglnVWishltuk5N+SrZitWeK0sZvlyq2fPf/wDHn4YjEdK5ZRS
yjdqDQIisgo4XMtq3rs17t1rDbnlhfqADz6AO++06gAaQR91SilVZ+4qVO9rjNlojPnEGNPdTft0
bsUKuPZajw+m+69/Wd/8//MfrQBWSjVd7qgY/gqIE5GTxphBwHzgoupWTk9Pt88nJSWRVNc7rIeL
gkTgT3+ygsCKFXDhhR47lFJKOZWdnU12drZXjuXSewLGmHjgIxH5PxfWzQEuF5FCJ2kNf0/gpz+1
xmG87LKG7ceJ0lL43e9g6VLrCSA62u2HUEqpOvOHXkQN1ZT7G2OiHOb7YAWWKgHALfbvt17V9dAL
Yk8+CV9+CStXagBQSgWGWouDjDGZQBIQYYzZDaQBwYCIyHRgiDHmQeAscAq402O59WB9wLRp1pi/
X36p3T4rpQJH4+o24qGHrP6ZH3/cfZkCFi+GMWNg1Srt/lkp5X/8oTjIP3igUvibb6zhH+fN0wCg
lAo8jScI/Pgj5OdDz55u22VBAdxyC7z8Mlx9tdt2q5RSjUbjCQIrV8I117itPuD4cfjFL+CBB2DY
MLfsUimlGp3GEwSys91WFFRSAiNGWA8VTz/tll0qpVSj1LiCgJs6jXv8cThxwmoRpH0BKaUCWePo
SvrAAcjLs0Zwb6C5c61BYdasgeBgN+RNKaUascYRBMrqAxo4hNfevdaA8B9/DO3buylvSinViDWO
4qAVKxpcFCQC991nTb17uylfSinVyDWOJ4HsbPj3vxu0i9mzrRKl9993S46UUqpJ8OsngZycXEYO
eZrkLRGMfOkTcnJy67Wf3bvhiSfgjTe0HkAppRz5bbcROTm59O//Mjt2TALaACdITExj6dJHSEiI
d/mYpaUwYAAkJ1uDxCulVGMTkN1GpKbOdggAAG3YsWMSqamz67SfadPg6FHrSUAppVRFflsnkJ9f
SnkAKNOGgoJSl/exYwdMnGh1DNfAhkVKKdUk+e2TQExMEHCi0tITREe7luWSEhg9Gp55Brp1c3fu
lFKqafDbIJCRMZrE2KcoDwRWnUBGxmiXtn/pJQgKgt/+1jP5U0qppsBvK4YBcv76N1KnfkJB4tVE
RweRkTHapUrhvDyrX6B166BLlwZkWCml/IAnK4b9Oggwbhx07FjnWt177oGoKHj++TpmUCml/JAn
g4B/V5d+/TWkptZpk+++g48+gm3bPJQnpZRqQvz3SaC01OrgJycHIiJcPsatt1rdDP3ud/XMpFJK
+ZnAfBLYvt26+dchAPz3v9bDwzvveDBfSinVhPht6yC+/houu8zl1UXgqacgPR1atvRctpRSqilp
MkEgKwsOHYJRozyYJ6WUamL8Nwh89ZXLQaCkxBom8vnn9c1gpZSqi1qDgDFmhjFmvzHm2xrWmWqM
+Z8xZqMxpmeDcyVSpyeBzExo1w5++csGH1kppQKKK9+bZwEvA284SzTGDAISReRCY8wVwDTgygbl
atcuaNPGauxfizNnrP6B3nhDxwv2V507dyY3t37dgCsVSOLj49m1a5dXj1lrEBCRVcaYml7THYwt
QIjIGmNMqDEmSkT21ztXdXgKmDYNLr4Yrr223kdTHpabm4s3myIr1VgZH3yTdUcJegyQ5/A537as
/kHAxfqAo0eteoBPP633kZRSKqB5vRo1PT3dPp+UlERSUlLVlb7+Gh56qNZ9/fWv1oAxPXq4L39K
KeVr2dnZZGdne+VYLr0xbCsO+khE/s9J2jRguYjMtX3+AbjOWXGQS28Mi1h1ARs2QExMtasdPw7x
8bB+PSQk1HoKyodsbzv6OhtK+b3q/lf8YWQxY5ucWQiMAjDGXAkUNag+ID/fquGNjq5xtTlzoF8/
DQBKKdUQtRYHGWMygSQgwhizG0gDggERkekikmWMudkYsx2r8/8xDcpRWX1ADRUkIvDKK9aYAUop
peqv1icBERkhItEicp6IxInILBF5TUSmO6zzsIh0FZFLReTrBuXIhZZBK1daL4hdf32DjqSUX1mx
YgWxsbFe3xZg8uTJ3HffffXeXjVe/vd+7ddfw5iaHyZeeQUefljfC1BNT0OaCDZk26effrre26rG
zf+6jajlSSAvDz77DO66y4t5UkqpJsq/gsC+fXDqlNXspxqvvQYjR1rdRCjVUEFBQezcudP+ecyY
MUycOBEoL2J58cUXiYqKIiYmhtmzZ9vXzcrK4uKLLyYkJMS+XpkFCxbQq1cvQkNDufDCC1myZAkA
s2fPpnv37oSEhNC1a1emT7eXqlaxd+9ehgwZQmRkJImJibz88sv2tNOnTzN69GjCw8O55JJLWLdu