-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgmres.cpp
169 lines (130 loc) · 4.34 KB
/
gmres.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
* GMRES subroutine.
*
* copyright@ Yimin Zhong. [email protected]. All Rights Reserved.
*
*/
#include "gmres.h"
using namespace bbfmm;
inline void
Update(Vector &x, int k, Matrix &h, Vector &s, Vector v[]) {
Vector y(s);
for (int i = k; i >= 0; i--) {
y(i) /= h(i, i);
for (int j = i - 1; j >= 0; j--)
y(j) -= h(j, i) * y(i);
}
for (int j = 0; j <= k; j++)
daxpy(y(j), v[j], x);
}
void GeneratePlaneRotation(scalar_t &dx, scalar_t &dy, scalar_t &cs, scalar_t &sn) {
if (dy == 0.0) {
cs = 1.0;
sn = 0.0;
} else if (abs(dy) > abs(dx)) {
scalar_t temp = dx / dy;
sn = 1.0 / sqrt(1.0 + temp * temp);
cs = temp * sn;
} else {
scalar_t temp = dy / dx;
cs = 1.0 / sqrt(1.0 + temp * temp);
sn = temp * cs;
}
}
void ApplyPlaneRotation(scalar_t &dx, scalar_t &dy, scalar_t &cs, scalar_t &sn) {
scalar_t temp = cs * dx + sn * dy;
dy = -sn * dx + cs * dy;
dx = temp;
}
inline scalar_t abs(scalar_t x) {
return (x > 0 ? x : -x);
}
int GMRES(const std::function<Vector(Vector &)> A, Vector &x, Vector &b, int m, int max_iter,
scalar_t tol) {
/*
* for performance use
*/
std::chrono::steady_clock::time_point begin;
std::chrono::steady_clock::time_point end;
scalar_t resid;
scalar_t _tol = tol;
int _max_iter = max_iter;
int i, j = 1, k;
Vector s(m + 1), cs(m + 1), sn(m + 1), w;
scalar_t normb = nrm2(b);
Vector r = b;
Vector p = A(x);
daxpy(-1.0, p, r);
scalar_t beta = nrm2(r);
/*
* error is |Ax - b|/|b|
*/
std::cout << "=============== GMRES =================" << std::endl;
std::cout << " iter | rel error | time " << std::endl;
begin = std::chrono::steady_clock::now();
if (normb == 0.0)
normb = 1;
if ((resid = nrm2(r) / normb) <= _tol) {
_tol = resid;
_max_iter = 0;
return 0;
}
Vector *v = new Vector[m + 1];
Matrix H(x.row(), m + 1);
while (j <= _max_iter) {
v[0] = r; // ??? r / beta
dscal((1.0 / beta), v[0]);
setValue(s, 0.);
s(0) = beta;
for (i = 0; i < m && j <= _max_iter; i++, j++) {
end = std::chrono::steady_clock::now();
std::cout << std::setw(6) << j << std::setw(20) << std::scientific << resid
<< std::setw(12) << std::fixed
<< std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() / 1000000.0
<< std::fixed
<< std::endl;
begin = std::chrono::steady_clock::now();
w = A(v[i]);
for (k = 0; k <= i; k++) {
H(k, i) = ddot(w, v[k]);
daxpy(-H(k, i), v[k], w);
}
H(i + 1, i) = nrm2(w);
v[i + 1] = w;
dscal((1.0 / H(i + 1, i)), v[i + 1]);
// ??? w / H(i+1, i)
for (k = 0; k < i; k++) {
ApplyPlaneRotation((scalar_t &) H(k, i), (scalar_t &) H(k + 1, i), (scalar_t &) cs(k),
(scalar_t &) sn(k));
}
GeneratePlaneRotation((scalar_t &) H(i, i), (scalar_t &) H(i + 1, i), (scalar_t &) cs(i),
(scalar_t &) sn(i));
ApplyPlaneRotation((scalar_t &) H(i, i), (scalar_t &) H(i + 1, i), (scalar_t &) cs(i), (scalar_t &) sn(i));
ApplyPlaneRotation((scalar_t &) s(i), (scalar_t &) s(i + 1), (scalar_t &) cs(i), (scalar_t &) sn(i));
if ((resid = abs(s(i + 1)) / normb) < _tol) {
Update(x, i, H, s, v);
_tol = resid;
_max_iter = j;
std::cout << "=============== CONVERGED =============" << std::endl;
delete[] v;
return 0;
}
}
Update(x, i - 1, H, s, v);
r = b;
p = A(x);
daxpy(-1.0, p, r);
beta = nrm2(r);
if ((resid = beta / normb) < _tol) {
_tol = resid;
_max_iter = j;
std::cout << "=============== CONVERGED =============" << std::endl;
delete[] v;
return 0;
}
}
_tol = resid;
delete[] v;
std::cout << "============= NOT CONVERGED ===========" << std::endl;
return 1;
}