-
Notifications
You must be signed in to change notification settings - Fork 5
/
1_4_17.tex
159 lines (159 loc) · 6.41 KB
/
1_4_17.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
\section{January 4, 2017} %Pranav
\noindent \textbf{Rings}
\begin{defn} \label{Defn 1, Jan 4} \hspace{0.5cm}
\begin{enumerate}[a)]
\item A \textbf{ring} is a tuple $(R, +, \cdot, 0)$ where:
\begin{itemize}
\item $R$ is a set
\item $0 \in R$
\item $+,\cdot: R \times R \rightarrow R$, $\quad$ $(a,b) \mapsto a + b, a \cdot b$
\end{itemize}
subject to:
\begin{itemize}
\item $(R, +, 0)$ is an abelian group
\item $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
\item $(a + b) \cdot c = a \cdot c + b \cdot c$
\item $a \cdot (b + c) = a \cdot b + a \cdot c$
\end{itemize}
\item A \textbf{ring with unity} is a tuple $(R, +, \cdot, 0, 1)$, where
$(R,+,\cdot,0)$ is a ring, and $1 \in R$ is subject to $1 \cdot a = a \cdot 1 = a$
for all $a \in R$.
\item A ring $(R, +, \cdot, 0)$ is called \textbf{commutative} if $ab = ba$ for all
$a, b \in R$.
\item A \textbf{field} is a commutative ring with unity $(R,+,\cdot,0,1)$ such
that $(R \backslash \{0\}, \cdot, 1)$ is a group.
\end{enumerate}
\end{defn}
\begin{rmk} \hspace{0.5cm}
\begin{itemize}
\item We don't really need to include 0,1 in notation: they are unique
if they exist
\item There is a notion of a \textbf{skew field}: ring with unity
$(R,+,\cdot,0,1)$ such that $(R \backslash \{0\}, \cdot , 1)$ is a group.
(This drops the commutative condition from the definition of a field).
\item In French: \textit{corps} is a skew field, and \textit{corps commutatif} is a field.
\end{itemize}
\end{rmk}
\begin{fact}\label{Fact 2, Jan 4}
Let $R$ be a ring. For all $a \in R$, $0 \cdot a = 0$.
\end{fact}
\begin{proof}
$(0 \cdot a) = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a \Rightarrow 0 = 0 \cdot a$
\end{proof}
\begin{ex} \hspace{0.5cm}
\begin{itemize}
\item $\ZZ$ is a ring, commutative, with unity
\item $\QQ, \RR, \CC$ are fields
\item $\HH = \{a + bi + cj + dk \mid a,b,c,d \in \RR \}$ where $i^2 = j^2 = k^2 = ijk = -1$ are
called the \textbf{Hamiltonian Quaternions} and are a skew-field
\item $\mathcal{C}_{C}(\RR) = $ functions on $\RR$ with compact
support \\
($\supp(f) = \overline{\{x \in \RR \mid f(x) \neq 0\}}$) is a
commutative ring without unity
\item $R = \{\star\}, 0 = 1 = \star$ is the \textbf{zero ring}.
\end{itemize}
\end{ex}
\begin{fact} \label{Fact 3, Jan 4}
If $(R,+,\cdot,0,1)$ is a ring with unity and $0 = 1$, then $R$ is the zero ring.
\end{fact}
\begin{proof}
Take $a \in R$. Then $a = a \cdot 1 = a \cdot 0 = 0$ by Fact \ref{Fact 2, Jan 4}.
\end{proof}
\noindent \underline{Convention}: Unless otherwise noted, ring will refer to
a commutative ring with 1.
\begin{defn} \label{Defn 4, Jan 4}
Let $R$ be a ring. Its \textbf{group of units} is
$$
R^\times = \{a \in R \mid \exists \, b \in R: ab = 1\}
$$
\end{defn}
\begin{fact} \label{Fact 5, Jan 4} \hspace{0.5cm}
\begin{itemize}
\item For $a \in R^\times$, there is a unique $b \in R$ such that $ab = 1$.
Write $b = a^{-1}$.
\item For $a,b \in R^\times$, $a \cdot b \in R^\times$.
\end{itemize}
\end{fact}
\begin{proof} \hspace{0.5cm}
\begin{itemize}
\item Given $b, b^\prime$, we have $b = b \cdot 1 = b(ab^\prime) = (ba)b^\prime = 1 \cdot b^\prime
= b^\prime$.
\item $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = 1$
\end{itemize}
\end{proof}
\begin{ex}
$\RR^\times = \RR \backslash \{0\}$, $\ZZ^\times = \{1, -1\}$
\end{ex}
\begin{defn} \label{Defn 6, Jan 4}
Let $R, S$ be rings. A \textbf{morphism} $\phi:R \rightarrow S$ is a map of
sets $\varphi:R \rightarrow S$ satisfying
\begin{itemize}
\item $\varphi(a + b) = \varphi(a) + \varphi(b)$
\item $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$
\item $\varphi(1) = 1$
\end{itemize}
\end{defn}
\begin{ex}
$\varphi:\ZZ \rightarrow \ZZ$ $u \mapsto 0$ is \underline{not} a morphism of
rings with 1. (it is a morphism of general rings).
\end{ex}
\begin{fact}\label{Fact 7, Jan 4}
For any ring $R$ there is a unique morphism $\varphi:\ZZ \rightarrow R$. Given
$z \in \ZZ$, we write $z_{R}$, or simply $z$ for its image under $\varphi$.
\end{fact}
\begin{ex}
$5 \in \ZZ$, $5_{\QQ} \in \QQ$ usual number $5$. $5_{\Zn 2} = 1_{\Zn 2}$
\end{ex}
\begin{defn} \label{Defn 8, Jan 4}
Let $R$ be a ring. A subset $I \subset R$ is called an \textbf{ideal} if
\begin{itemize}
\item $I$ is a subgroup of $(R, +, 0)$
\item $a \cdot f \in I$ for all $a \in R, f \in I$.
\end{itemize}
\end{defn}
\begin{defn} \label{Defn 9, Jan 4}
Let $R$ be a ring. A subset $S \subset R$ is called a \textbf{subring} if
\begin{itemize}
\item $S$ is a subgroup of $(R, +, 0)$
\item $a \cdot b \in S$ for all $a, b \in S$.
\item $1 \in S$.
\end{itemize}
\end{defn}
\begin{rmk}\hspace{0.5cm}
\begin{itemize}
\item The only subset that is both a subring and an ideal is $R$ itself.
(reason: if $1 \in I$, then $a \cdot 1 \in I$ for all $a \in R$, meaning $I = R$)
\item $I = \{0\}, I = R$ are always ideals.
\item In rings without unity, the 2 notions align closer: ideal becomes a special
case of subring as $1 \in S$ condition is dropped.
\end{itemize}
\end{rmk}
\begin{ex} \hspace{0.5cm}
\begin{itemize}
\item Every subgroup of $(\ZZ, +, 0)$ is an ideal of $\ZZ$.
\item If $F$ is a field, then $\{0\}, R$ are the only ideals
\item Let $R = \mathcal{C}_C(\RR), S \in R$ subset.
$$
I = \{f \in \mathcal{C}_C(\RR) \mid f \mid_{S} = 0 \}
$$
is an ideal
\end{itemize}
\end{ex}
\begin{defn} \label{Defn 10, Jan 4}
An ideal $I \in R$ is called \textbf{principal} if $I = \{a \cdot r \mid r \in R\}$
for some $a \in R$. Then $a$ is called a \textbf{generator}.
\end{defn}
\begin{defn} \label{Defn 11, Jan 4}
Let $a_1, a_2, \dots a_n \in R$. An \textbf{ideal generated by} $a_1, \dots a_n$ is
$$
(a_1, \dots a_n) = \{a_1r_1 + \dots + a_nr_n \mid r_i \in R\}
$$
\end{defn}
\begin{fact} \label{Fact 12, Jan 4}
Given ideals $I, J \subset R$ we have
\begin{itemize}
\item $I \cap J$ is an ideal
\item $I + J = \{a + b \mid a \in I, b \in J \}$ is an ideal
\item $I \cdot J = \left\{\sum\limits_{i = 1}^{n}a_ib_i \mid a_i \in I, b_i \in J \right\}$ is an ideal
\end{itemize}
\end{fact}