-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharithmetic_codec.h
797 lines (641 loc) · 29.8 KB
/
arithmetic_codec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
#ifndef __ARITHMETIC_CODEC__
#define __ARITHMETIC_CODEC__
// Ported in C from on FastAC by Amir Said's
// https://github.com/richgel999/FastAC
// The only purpose of this program is to demonstrate the basic principles -
// of arithmetic coding. It is provided as is, without any express or -
// implied warranty, without even the warranty of fitness for any particular -
// purpose, or that the implementations are correct. -
// -
// Permission to copy and redistribute this code is hereby granted, provided -
// that this warning and copyright notices are not removed or altered. -
// -
// Copyright (c) 2004 by Amir Said ([email protected]) & -
// William A. Pearlman ([email protected])
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
struct adaptive_model;
struct static_model;
struct arithmetic_codec;
//----------------------------------------------------------------------------------------------------------------------
// Adaptive data model
//----------------------------------------------------------------------------------------------------------------------
// Initialize the adaptive data model, returns a pointer to the model
struct adaptive_model* adaptive_model_init(uint32_t number_of_symbols);
// Release memory
void adaptive_model_terminate(struct adaptive_model* model);
// Reset the statistics of the model (all symbols counter resetted to one)
void adaptive_model_reset(struct adaptive_model* model);
// Change the number of symbols of the model. It will reset the model
void adaptive_model_set_alphabet(struct adaptive_model* model, uint32_t number_of_symbols);
// Return how many time the symbol has been encoded
uint32_t adaptive_model_get_symbol_count(const struct adaptive_model* model, uint32_t symbol);
//----------------------------------------------------------------------------------------------------------------------
// Static data model
//----------------------------------------------------------------------------------------------------------------------
// Initialize the static data model, returns a pointer to the model
// number_of_symbols Number of symbols maximum
// probability Pointer to an array of float containing probability. Array must have the size of number_of_symbols
// Each float must be [0;1]
struct static_model* static_model_init(uint32_t number_of_symbols, const float *probability);
// Set up the distribution
// number_of_symbols Number of symbols maximum
// probability Pointer to an array of float containing probability. Array must have the size of number_of_symbols
// Each float must be [0;1]
void static_model_set_distribution(struct static_model* model, uint32_t number_of_symbols, const float *probability);
// Release memory
void static_model_terminate(struct static_model* model);
//----------------------------------------------------------------------------------------------------------------------
// Arithmetic Codec
//----------------------------------------------------------------------------------------------------------------------
// Initialize the arithmetic codec, returns a pointer to the codec
// You need to call ac_set_buffer() before starting encode/decode
struct arithmetic_codec* ac_init(void);
// Set the buffer for compressed data
// max_code_bytes Maximum size of the buffer in bytes
// user_buffer If the pointer to the buffer is NULL, memory will be allocated internally using malloc()
void ac_set_buffer(struct arithmetic_codec* codec, uint32_t max_code_bytes, uint8_t *user_buffer);
// Set the codec to encoding mode
void ac_start_encoder(struct arithmetic_codec* codec);
// Set the codec to decoding mode
void ac_start_decoder(struct arithmetic_codec* codec);
// Stop encoding, return the number of bytes used in the compressed buffer
uint32_t ac_stop_encoder(struct arithmetic_codec* codec);
// Stop the decoder
void ac_stop_decoder(struct arithmetic_codec* codec);
// Store multiple bits of data in the buffer
void ac_put_bits(struct arithmetic_codec* codec, uint32_t data, uint32_t number_of_bits);
// Get multiple bits of data from the buffer, returns the bits
uint32_t ac_get_bits(struct arithmetic_codec* codec, uint32_t number_of_bits);
// Encode data using an adaptive model, the model should be initialized
void ac_encode_adaptive(struct arithmetic_codec* codec, uint32_t data, struct adaptive_model* model);
// Decode the next data from the buffer using an adaptative model
uint32_t ac_decode_adaptive(struct arithmetic_codec* codec, struct adaptive_model* model);
// Encode data using an static model, the model should be initialized
void ac_encode_static(struct arithmetic_codec* codec, uint32_t data, struct static_model* model);
// Decode the next data from the buffer using an static model
uint32_t ac_decode_static(struct arithmetic_codec* codec, struct static_model* model);
// Return a pointer to the compressed buffer
uint8_t* ac_get_buffer(struct arithmetic_codec* codec);
// Return a pointer to the compressed buffer
void ac_terminate(struct arithmetic_codec* codec);
#ifdef __cplusplus
}
#endif
#endif // __ARITHMETIC_CODEC__
//----------------------------------------------------------------------------------------------------------------------
// Implementation
//----------------------------------------------------------------------------------------------------------------------
#ifdef __ARITHMETIC_CODEC__IMPLEMENTATION__
#include <assert.h>
#if !defined(AC_FREE) && !defined(AC_ALLOC)
#include <stdlib.h>
#define AC_FREE(a) free(a)
#define AC_ALLOC(a) malloc(a)
#endif
//-- constants --------------------------------------------------------------------------------------------------------------------
#define AC__MinLength (0x01000000U) // threshold for renormalization
#define AC__MaxLength (0xFFFFFFFFU) // maximum AC interval length
// Maximum values for general models
#define DM__LengthShift (15) // length bits discarded before mult.
#define DM__MaxCount (1 << DM__LengthShift) // for adaptive models
//----------------------------------------------------------------------------------------------------------------------
// Adaptive data model
//----------------------------------------------------------------------------------------------------------------------
struct adaptive_model
{
uint32_t *distribution, *symbol_count, *decoder_table;
uint32_t total_count, update_cycle, symbols_until_update;
uint32_t data_symbols, last_symbol, table_size, table_shift;
};
void adaptive_model_update(struct adaptive_model* model, int from_encoder);
//----------------------------------------------------------------------------------------------------------------------
struct adaptive_model* adaptive_model_init(uint32_t number_of_symbols)
{
struct adaptive_model* model = (struct adaptive_model*) AC_ALLOC(sizeof(struct adaptive_model));
model->data_symbols = 0;
model->distribution = NULL;
adaptive_model_set_alphabet(model, number_of_symbols);
return model;
}
//----------------------------------------------------------------------------------------------------------------------
void adaptive_model_terminate(struct adaptive_model* model)
{
AC_FREE(model->distribution);
AC_FREE(model);
}
//----------------------------------------------------------------------------------------------------------------------
void adaptive_model_reset(struct adaptive_model* model)
{
if (model->data_symbols == 0)
return;
// restore probability estimates to uniform distribution
model->total_count = 0;
model->update_cycle = model->data_symbols;
for (uint32_t k = 0; k < model->data_symbols; k++)
model->symbol_count[k] = 1;
adaptive_model_update(model, 0);
model->symbols_until_update = model->update_cycle = (model->data_symbols + 6) >> 1;
}
//----------------------------------------------------------------------------------------------------------------------
void adaptive_model_set_alphabet(struct adaptive_model* model, uint32_t number_of_symbols)
{
assert(number_of_symbols>1 && (number_of_symbols <= (1 << 11))); // invalid number of data symbols
if (model->data_symbols != number_of_symbols)
{
// assign memory for data model
model->data_symbols = number_of_symbols;
model->last_symbol = model->data_symbols - 1;
AC_FREE(model->distribution);
// define size of table for fast decoding
if (model->data_symbols > 16)
{
uint32_t table_bits = 3;
while (model->data_symbols > (1U << (table_bits + 2))) ++table_bits;
model->table_size = 1 << table_bits;
model->table_shift = DM__LengthShift - table_bits;
model->distribution = (uint32_t*) AC_ALLOC(sizeof(uint32_t) * (2 * model->data_symbols+model->table_size+2));
model->decoder_table = model->distribution + 2 * model->data_symbols;
assert(model->distribution != NULL);
}
else
{
// small alphabet: no table needed
model->decoder_table = 0;
model->table_size = model->table_shift = 0;
model->distribution = (uint32_t*) AC_ALLOC( sizeof(uint32_t) * 2 * model->data_symbols);
}
model->symbol_count = model->distribution + model->data_symbols;
assert(model->distribution != NULL); // cannot assign model memory
}
// initialize model
adaptive_model_reset(model);
}
//----------------------------------------------------------------------------------------------------------------------
void adaptive_model_update(struct adaptive_model* model, int from_encoder)
{
if ((model->total_count += model->update_cycle) > DM__MaxCount)
{
model->total_count = 0;
for (uint32_t n = 0; n < model->data_symbols; n++)
model->total_count += (model->symbol_count[n] = (model->symbol_count[n] + 1) >> 1);
}
// compute cumulative distribution, decoder table
uint32_t k, sum = 0, s = 0;
uint32_t scale = 0x80000000U / model->total_count;
if (from_encoder || (model->table_size == 0))
{
for (k = 0; k < model->data_symbols; k++)
{
model->distribution[k] = (scale * sum) >> (31 - DM__LengthShift);
sum += model->symbol_count[k];
}
}
else
{
for (k = 0; k < model->data_symbols; k++)
{
model->distribution[k] = (scale * sum) >> (31 - DM__LengthShift);
sum += model->symbol_count[k];
uint32_t w = model->distribution[k] >> model->table_shift;
while (s < w) model->decoder_table[++s] = k - 1;
}
model->decoder_table[0] = 0;
while (s <= model->table_size) model->decoder_table[++s] = model->data_symbols - 1;
}
// set frequency of model updates
model->update_cycle = (5 * model->update_cycle) >> 2;
uint32_t max_cycle = (model->data_symbols + 6) << 3;
if (model->update_cycle > max_cycle)
model->update_cycle = max_cycle;
model->symbols_until_update = model->update_cycle;
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t adaptive_model_get_symbol_count(const struct adaptive_model* model, uint32_t symbol)
{
assert(symbol < model->data_symbols); // invalid data symbols
assert(model->distribution != NULL); // adaptive model should be initialized
return model->symbol_count[symbol];
}
//----------------------------------------------------------------------------------------------------------------------
// Static data model
//----------------------------------------------------------------------------------------------------------------------
struct static_model
{
uint32_t *distribution, *decoder_table;
uint32_t data_symbols, last_symbol, table_size, table_shift;
};
//----------------------------------------------------------------------------------------------------------------------
struct static_model* static_model_init(uint32_t number_of_symbols, const float *probability)
{
struct static_model* model = (struct static_model*) AC_ALLOC(sizeof(struct static_model));
model->data_symbols = 0;
model->distribution = NULL;
static_model_set_distribution(model, number_of_symbols, probability);
return model;
}
//----------------------------------------------------------------------------------------------------------------------
void static_model_set_distribution(struct static_model* model, uint32_t number_of_symbols, const float *probability)
{
assert(number_of_symbols>1 && (number_of_symbols <= (1 << 11))); // invalid number of data symbols
if (model->data_symbols != number_of_symbols)
{
// assign memory for data model
model->data_symbols = number_of_symbols;
model->last_symbol = model->data_symbols - 1;
AC_FREE(model->distribution);
// define size of table for fast decoding
if (model->data_symbols > 16)
{
uint32_t table_bits = 3;
while (model->data_symbols > (1U << (table_bits + 2)))
++table_bits;
model->table_size = 1 << table_bits;
model->table_shift = DM__LengthShift - table_bits;
model->distribution = (uint32_t*) AC_ALLOC(sizeof(uint32_t) * (model->data_symbols+model->table_size+2));
model->decoder_table = model->distribution + model->data_symbols;
}
else
{ // small alphabet: no table needed
model->decoder_table = 0;
model->table_size = model->table_shift = 0;
model->distribution = (uint32_t*) AC_ALLOC(sizeof(uint32_t) * model->data_symbols);
}
assert(model->distribution != NULL);
}
// compute cumulative distribution, decoder table
uint32_t s = 0;
float sum = 0.0f, p = 1.0f / (float)(model->data_symbols);
for (unsigned k = 0; k < model->data_symbols; k++)
{
if (probability)
p = probability[k];
assert(p>=0.f && p<= 1.f);
model->distribution[k] = (uint32_t)(sum * (1 << DM__LengthShift));
sum += p;
if (model->table_size == 0)
continue;
uint32_t w = model->distribution[k] >> model->table_shift;
while (s < w) model->decoder_table[++s] = k - 1;
}
if (model->table_size != 0)
{
model->decoder_table[0] = 0;
while (s <= model->table_size)
model->decoder_table[++s] = model->data_symbols - 1;
}
assert(sum >= 0.9999f && sum <= 1.001f);
}
//----------------------------------------------------------------------------------------------------------------------
void static_model_terminate(struct static_model* model)
{
AC_FREE(model->distribution);
AC_FREE(model);
}
//----------------------------------------------------------------------------------------------------------------------
// Arithmetic Codec
//----------------------------------------------------------------------------------------------------------------------
struct arithmetic_codec
{
uint8_t *code_buffer, *new_buffer, *ac_pointer;
uint32_t base, value, length; // arithmetic coding state
uint32_t buffer_size;
uint32_t mode; // mode: 0 = undef, 1 = encoder, 2 = decoder
};
//----------------------------------------------------------------------------------------------------------------------
inline static void ac_propagate_carry(struct arithmetic_codec* codec)
{
uint8_t * p;
// carry propagation on compressed data buffer
for (p = codec->ac_pointer - 1; *p == 0xFFU; p--)
*p = 0;
++*p;
}
//----------------------------------------------------------------------------------------------------------------------
inline static void ac_renorm_enc_interval(struct arithmetic_codec* codec)
{
do // output and discard top byte
{
*codec->ac_pointer++ = (uint8_t)(codec->base >> 24);
codec->base <<= 8;
} while ((codec->length <<= 8) < AC__MinLength); // length multiplied by 256
}
//----------------------------------------------------------------------------------------------------------------------
inline static void ac_renorm_dec_interval(struct arithmetic_codec* codec)
{
do // read least-significant byte
{
codec->value = (codec->value << 8) | (uint32_t)(*++codec->ac_pointer);
} while ((codec->length <<= 8) < AC__MinLength); // length multiplied by 256
}
//----------------------------------------------------------------------------------------------------------------------
struct arithmetic_codec* ac_init(void)
{
struct arithmetic_codec* codec = (struct arithmetic_codec*) AC_ALLOC(sizeof(struct arithmetic_codec));
codec->mode = codec->buffer_size = 0;
codec->new_buffer = codec->code_buffer = NULL;
return codec;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_set_buffer(struct arithmetic_codec* codec, uint32_t max_code_bytes, uint8_t *user_buffer)
{
assert(codec->mode == 0); // cannot set buffer while encoding or decoding
if (user_buffer != NULL)
{
// user provides memory buffer
codec->buffer_size = max_code_bytes;
codec->code_buffer = user_buffer; // set buffer for compressed data
AC_FREE(codec->new_buffer); // free anything previously assigned
codec->new_buffer = NULL;
return;
}
// enough space available in the current buffer
if (max_code_bytes <= codec->buffer_size)
return;
codec->buffer_size = max_code_bytes; // assign new memory
AC_FREE(codec->new_buffer); // free anything previously assigned
codec->new_buffer = (uint8_t*) AC_ALLOC(codec->buffer_size + 16); // 16 extra bytes
assert(codec->new_buffer != NULL);
codec->code_buffer = codec->new_buffer; // set buffer for compressed data
}
//----------------------------------------------------------------------------------------------------------------------
void ac_start_encoder(struct arithmetic_codec* codec)
{
assert(codec->mode == 0); // cannot start encoder
assert(codec->buffer_size != 0); // no buffer set
codec->mode = 1;
codec->base = 0;
codec->length = AC__MaxLength;
codec->ac_pointer = codec->code_buffer;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_start_decoder(struct arithmetic_codec* codec)
{
assert(codec->mode == 0); // cannot start encoder
assert(codec->buffer_size != 0); // no buffer set
codec->mode = 2;
codec->length = AC__MaxLength;
codec->ac_pointer = codec->code_buffer + 3;
codec->value = ((uint32_t)(codec->code_buffer[0]) << 24) |
((uint32_t)(codec->code_buffer[1]) << 16) |
((uint32_t)(codec->code_buffer[2]) << 8) |
(uint32_t)(codec->code_buffer[3]);
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t ac_stop_encoder(struct arithmetic_codec* codec)
{
assert(codec->mode == 1); // invalid to stop encoder
codec->mode = 0;
uint32_t init_base = codec->base; // done encoding: set final data bytes
if (codec->length > 2 * AC__MinLength)
{
codec->base += AC__MinLength; // base offset
codec->length = AC__MinLength >> 1; // set new length for 1 more byte
}
else
{
codec->base += AC__MinLength >> 1; // base offset
codec->length = AC__MinLength >> 9; // set new length for 2 more bytes
}
if (init_base > codec->base)
ac_propagate_carry(codec); // overflow = carry
ac_renorm_enc_interval(codec); // renormalization = output last bytes
uint32_t code_bytes = (uint32_t)(codec->ac_pointer - codec->code_buffer);
assert(code_bytes <= codec->buffer_size); // code buffer overflow
return code_bytes; // number of bytes used
}
//----------------------------------------------------------------------------------------------------------------------
void ac_stop_decoder(struct arithmetic_codec* codec)
{
assert(codec->mode == 2); // invalid to stop decoder
codec->mode = 0;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_put_bit(struct arithmetic_codec* codec, uint32_t bit)
{
assert(codec->mode == 1); // encoder not initialized
codec->length >>= 1; // halve interval
if (bit)
{
uint32_t init_base = codec->base;
codec->base += codec->length; // move base
if (init_base > codec->base)
ac_propagate_carry(codec); // overflow = carry
}
if (codec->length < AC__MinLength)
ac_renorm_enc_interval(codec); // renormalization
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t ac_get_bit(struct arithmetic_codec* codec)
{
assert(codec->mode == 2); // decoder not initialized
codec->length >>= 1; // halve interval
uint32_t bit = (codec->value >= codec->length); // decode bit
if (bit)
codec->value -= codec->length; // move base
if (codec->length < AC__MinLength)
ac_renorm_dec_interval(codec); // renormalization
return bit;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_put_bits(struct arithmetic_codec* codec, uint32_t data, uint32_t number_of_bits)
{
assert(codec->mode == 1); // encoder not initialized
assert((number_of_bits > 0) && (number_of_bits < 21)); // invalid number of bits
assert(data < (1U << number_of_bits)); // invalid data
uint32_t init_base = codec->base;
codec->base += data * (codec->length >>= number_of_bits); // new interval base and length
if (init_base > codec->base)
ac_propagate_carry(codec); // overflow = carry
if (codec->length < AC__MinLength)
ac_renorm_enc_interval(codec); // renormalization
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t ac_get_bits(struct arithmetic_codec* codec, uint32_t number_of_bits)
{
assert(codec->mode == 2); // decoder not initialized
assert((number_of_bits > 0) && (number_of_bits < 21)); // invalid number of bits
// decode symbol, change length
unsigned s = codec->value / (codec->length >>= number_of_bits);
codec->value -= codec->length * s; // update interval
if (codec->length < AC__MinLength)
ac_renorm_dec_interval(codec); // renormalization
return s;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_encode_adaptive(struct arithmetic_codec* codec, uint32_t data, struct adaptive_model* model)
{
assert(codec->mode == 1); // encoder not initialized
assert(data < model->data_symbols); // invalid data symbols
assert(model->distribution != NULL); // adaptive model should be initialized
uint32_t x;
uint32_t init_base = codec->base;
// compute products
if (data == model->last_symbol)
{
x = model->distribution[data] * (codec->length >> DM__LengthShift);
codec->base += x; // update interval
codec->length -= x; // no product needed
}
else
{
x = model->distribution[data] * (codec->length >>= DM__LengthShift);
codec->base += x; // update interval
codec->length = model->distribution[data+1] * codec->length - x;
}
if (init_base > codec->base)
ac_propagate_carry(codec); // overflow = carry
if (codec->length < AC__MinLength)
ac_renorm_enc_interval(codec); // renormalization
++model->symbol_count[data];
if (--model->symbols_until_update == 0)
adaptive_model_update(model, 1);
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t ac_decode_adaptive(struct arithmetic_codec* codec, struct adaptive_model* model)
{
assert(codec->mode == 2); // decoder not initialized
assert(model->distribution != NULL); // adaptive model should be initialized
uint32_t n, s, x, y = codec->length;
if (model->decoder_table)
{
// use table look-up for faster decoding
uint32_t dv = codec->value / (codec->length >>= DM__LengthShift);
uint32_t t = dv >> model->table_shift;
s = model->decoder_table[t]; // initial decision based on table look-up
n = model->decoder_table[t+1] + 1;
while (n > s + 1)
{ // finish with bisection search
uint32_t m = (s + n) >> 1;
if (model->distribution[m] > dv)
n = m;
else s = m;
}
// compute products
x = model->distribution[s] * codec->length;
if (s != model->last_symbol)
y = model->distribution[s+1] * codec->length;
}
else
{
// decode using only multiplications
x = s = 0;
codec->length >>= DM__LengthShift;
uint32_t m = (n = model->data_symbols) >> 1;
// decode via bisection search
do
{
uint32_t z = codec->length * model->distribution[m];
if (z > codec->value)
{
n = m;
y = z; // value is smaller
}
else
{
s = m;
x = z; // value is larger or equal
}
} while ((m = (s + n) >> 1) != s);
}
codec->value -= x; // update interval
codec->length = y - x;
if (codec->length < AC__MinLength)
ac_renorm_dec_interval(codec); // renormalization
++model->symbol_count[s];
if (--model->symbols_until_update == 0)
adaptive_model_update(model, 0);
return s;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_encode_static(struct arithmetic_codec* codec, uint32_t data, struct static_model* model)
{
assert(codec->mode == 1); // encoder not initialized
assert(data < model->data_symbols); // invalid data symbol
uint32_t x, init_base = codec->base;
// compute products
if (data == model->last_symbol)
{
x = model->distribution[data] * (codec->length >> DM__LengthShift);
codec->base += x; // update interval
codec->length -= x; // no product needed
}
else
{
x = model->distribution[data] * (codec->length >>= DM__LengthShift);
codec->base += x; // update interval
codec->length = model->distribution[data+1] * codec->length - x;
}
if (init_base > codec->base)
ac_propagate_carry(codec); // overflow = carry
if (codec->length < AC__MinLength)
ac_renorm_enc_interval(codec); // renormalization
}
//----------------------------------------------------------------------------------------------------------------------
uint32_t ac_decode_static(struct arithmetic_codec* codec, struct static_model* model)
{
assert(codec->mode == 2); // decoder not initialized
uint32_t n, s, x, y = codec->length;
if (model->decoder_table)
{
// use table look-up for faster decoding
uint32_t dv = codec->value / (codec->length >>= DM__LengthShift);
uint32_t t = dv >> model->table_shift;
// initial decision based on table look-up
s = model->decoder_table[t];
n = model->decoder_table[t+1] + 1;
while (n > s + 1)
{
// finish with bisection search
uint32_t m = (s + n) >> 1;
if (model->distribution[m] > dv)
n = m;
else
s = m;
}
// compute products
x = model->distribution[s] * codec->length;
if (s != model->last_symbol) y = model->distribution[s+1] * codec->length;
}
else
{
// decode using only multiplications
x = s = 0;
codec->length >>= DM__LengthShift;
uint32_t m = (n = model->data_symbols) >> 1;
// decode via bisection search
do
{
uint32_t z = codec->length * model->distribution[m];
if (z > codec->value)
{
n = m;
y = z; // value is smaller
}
else
{
s = m;
x = z; // value is larger or equal
}
} while ((m = (s + n) >> 1) != s);
}
// update interval
codec->value -= x;
codec->length = y - x;
if (codec->length < AC__MinLength)
ac_renorm_dec_interval(codec); // renormalization
return s;
}
//----------------------------------------------------------------------------------------------------------------------
uint8_t* ac_get_buffer(struct arithmetic_codec* codec)
{
return codec->code_buffer;
}
//----------------------------------------------------------------------------------------------------------------------
void ac_terminate(struct arithmetic_codec* codec)
{
AC_FREE(codec->new_buffer);
}
#endif // __ARITHMETIC_CODEC__IMPLEMENTATION__