-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestfun_mo.py
71 lines (61 loc) · 1.93 KB
/
testfun_mo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# test function for multi-objective optimization
# Test Problems of Tanabe and Ishibuchi(2020) DOI: 10.1016/j.asoc.2020.106078
# # Author: sunrc 2021-04
import numpy as np
import math
def evaluate(x):
f = np.zeros(2)
## RE22
g = np.zeros(2)
x1 = x[2]
x2 = x[0]
x3 = x[1]
f[0] = (29.4 * x1) + (0.6 * x2 * x3)
# Original constraint functions
g[0] = (x1 * x3) - 7.735 * ((x1 * x1) / x2) - 180.0
g[1] = 4.0 - (x3 / x2)
g = np.where(g < 0, -g, 0)
f[1] = g[0] + g[1]
## RE23
# g = np.zeros(3)
# x3 = x[0]
# x4 = x[1]
# x1 = x[2]
# x2 = x[3]
# f[0] = (0.6224 * x1 * x3* x4) + (1.7781 * x2 * x3 * x3) + (3.1661 * x1 * x1 * x4) + (19.84 * x1 * x1 * x3)
# # Original constraint functions
# g[0] = x1 - (0.0193 * x3)
# g[1] = x2 - (0.00954 * x3)
# g[2] = (np.pi * x3 * x3 * x4) + ((4.0/3.0) * (np.pi * x3 * x3 * x3)) - 1296000
# g = np.where(g < 0, -g, 0)
# f[1] = g[0] + g[1] + g[2]
## RE25
# g = np.zeros(6)
# x1 = x[1]
# x2 = x[0]
# x3 = x[2]
# # first original objective function
# f[0] = (np.pi * np.pi * x2 * x3 * x3 * (x1 + 2)) / 4.0
# # constraint functions
# Cf = ((4.0 * (x2 / x3) - 1) / (4.0 * (x2 / x3) - 4)) + (0.615 * x3 / x2)
# Fmax = 1000.0
# S = 189000.0
# G = 11.5 * 1e+6
# K = (G * x3 * x3 * x3 * x3) / (8 * x1 * x2 * x2 * x2)
# lmax = 14.0
# lf = (Fmax / K) + 1.05 * (x1 + 2) * x3
# dmin = 0.2
# Dmax = 3
# Fp = 300.0
# sigmaP = Fp / K
# sigmaPM = 6
# sigmaW = 1.25
# g[0] = -((8 * Cf * Fmax * x2) / (np.pi * x3 * x3 * x3)) + S
# g[1] = -lf + lmax
# g[2] = -3 + (x2 / x3)
# g[3] = -sigmaP + sigmaPM
# g[4] = -sigmaP - ((Fmax - Fp) / K) - 1.05 * (x1 + 2) * x3 + lf
# g[5] = sigmaW- ((Fmax - Fp) / K)
# g = np.where(g < 0, -g, 0)
# f[1] = g[0] + g[1] + g[2] + g[3] + g[4] + g[5]
return f