-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
253 lines (219 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import pandas as pd
from log import *
from parser import *
from eval import *
from utils import *
from train import *
from module import NLB
import resource
import torch.nn as nn
import statistics
import torch
import os
import numpy as np
os.environ["OMP_NUM_THREADS"] = '32'
torch.set_num_threads(32)
args, sys_argv = get_args()
BATCH_SIZE = args.bs
NUM_NEIGHBORS = args.n_degree
NUM_EPOCH = args.n_epoch
ATTN_NUM_HEADS = args.attn_n_head
DROP_OUT = args.drop_out
ATTN_DROPOUT = args.attn_dropout
DATA = args.data
NUM_HOP = args.n_hop
LEARNING_RATE = args.lr
TOLERANCE = args.tolerance
VERBOSITY = args.verbosity
SEED = args.seed
TIME_DIM = args.time_dim
REPLACE_PROB = args.replace_prob
SELF_DIM = args.self_dim
NODE_TO_GPU = True
NLB_NODE = args.nlb_node
EVAL_BS = args.bs
EDGE_FEAT_LOAD_TO_GPU_PARTITION_SIZE = int(5e7)
assert(NUM_HOP < 2) # only up to 1 hop is supported
logger, get_checkpoint_path, get_ngh_store_path, get_self_rep_path, get_prev_raw_path, best_model_path, best_model_ngh_store_path, best_decoder_path, get_decoder_checkpoint_path, runtime_id = set_up_logger(args, sys_argv)
# Load data and sanity check
g_df = pd.read_csv('./DATA/{}/edges.csv'.format(DATA))
g_df = g_df.rename(columns={'Unnamed: 0': 'idx', 'src': 'u', 'dst': 'i', 'time': 'ts'})
ts_l = g_df.ts.values
assert((ts_l == np.sort(ts_l)).all())
src_l = g_df.u.values.astype(int)
tgt_l = g_df.i.values.astype(int)
max_idx = max(src_l.max(), tgt_l.max())
min_idx = min(src_l.min(), tgt_l.min())
if DATA == 'GDELT':
edge_feat_in_gpu = False
edge_feats = torch.load('./DATA/GDELT/edge_features.pt')
edge_feats.requires_grad = False
node_feats = torch.load('./DATA/GDELT/node_features.pt')
node_feats.requires_grad = False
elif DATA == 'MAG':
edge_feats = None
NODE_TO_GPU = False
node_feats = torch.load('./DATA/MAG/node_features.pt')
node_feats.requires_grad = False
elif DATA == 'WIKI' or DATA == 'REDDIT':
edge_feats = torch.load('./DATA/{}/edge_features.pt'.format(DATA))
edge_feats.requires_grad = False
edge_feat_in_gpu = True
NODE_TO_GPU = True
node_feats = None
else:
node_feats = None
edge_feats = None
edge_feat_in_gpu = True
if min_idx == 0:
# move the node ids to start from 1
src_l = src_l + 1
tgt_l = tgt_l + 1
g_df.u = g_df.u + 1
g_df.i = g_df.i + 1
if node_feats is not None:
padding_n = torch.zeros_like(node_feats[:1])
node_feats = torch.cat((padding_n, node_feats), 0)
max_idx = max(src_l.max(), tgt_l.max())
min_idx = min(src_l.min(), tgt_l.min())
if edge_feats is not None:
if edge_feats.dtype == torch.bool:
edge_feats = edge_feats.type(torch.float32)
if node_feats is not None:
if node_feats.dtype == torch.bool:
node_feats = node_feats.type(torch.float32)
n_feat = node_feats.numpy()
assert(n_feat.shape[0] == max_idx + 1) # the nodes need to map one-to-one to the node feat matrix
else:
n_feat = None
e_idx_l = g_df.idx.values.astype(int)
label_l = g_df.ts.values
ts_l = g_df.ts.values
assert(np.unique(np.stack([src_l, tgt_l])).shape[0] == max_idx) # all nodes except node 0 should appear and be compactly indexed
# split and pack the data by generating valid train/val/test mask according to the "mode"
val_time, test_time = list(np.quantile(g_df.ts, [0.70, 0.85]))
transductive_auc = []
transductive_ap = []
inductive_auc = []
inductive_ap = []
test_times = []
inference_times = []
early_stoppers = []
total_time = []
for run in range(args.run):
SEED += run
set_random_seed(SEED)
if args.mode == 't':
logger.info('Transductive training...')
valid_train_flag = (ts_l <= val_time)
valid_val_flag = (ts_l <= test_time) * (ts_l > val_time)
valid_test_flag = ts_l > test_time
else:
assert(args.mode == 'i')
logger.info('Inductive training...')
# pick some nodes to mask (i.e. reserved for testing) for inductive setting
total_node_set = set(np.unique(np.hstack([src_l,tgt_l])))
num_total_unique_nodes = len(total_node_set)
mask_node_set = set(random.sample(set(src_l[ts_l > val_time]).union(set(tgt_l[ts_l > val_time])), int(0.1 * num_total_unique_nodes)))
mask_src_flag = g_df.u.map(lambda x: x in mask_node_set).values
mask_tgt_flag = g_df.i.map(lambda x: x in mask_node_set).values
none_mask_node_flag = (1 - mask_src_flag) * (1 - mask_tgt_flag)
valid_train_flag = (ts_l <= val_time) * (none_mask_node_flag > 0.5)
valid_val_flag = (ts_l <= test_time) * (ts_l > val_time) * (none_mask_node_flag > 0.5) # both train and val edges can not contain any masked nodes
all_train_val_flag = ts_l <= test_time
inductive_train_val_flag = (ts_l <= test_time) * (none_mask_node_flag <= 0.5)
valid_test_flag = (ts_l > test_time) * (none_mask_node_flag < 0.5) # test edges must contain at least one masked node
logger.info('Sampled {} nodes (10 %) which are masked in training and reserved for testing...'.format(len(mask_node_set)))
edge_feats_inductive = None
if edge_feats is not None:
edge_feats_inductive = edge_feats[valid_train_flag + valid_val_flag + valid_test_flag]
# split data according to the mask
train_src_l, train_tgt_l, train_ts_l, train_e_idx_l, train_label_l = src_l[valid_train_flag], tgt_l[valid_train_flag], ts_l[valid_train_flag], e_idx_l[valid_train_flag], label_l[valid_train_flag]
val_src_l, val_tgt_l, val_ts_l, val_e_idx_l, val_label_l = src_l[valid_val_flag], tgt_l[valid_val_flag], ts_l[valid_val_flag], e_idx_l[valid_val_flag], label_l[valid_val_flag]
test_src_l, test_tgt_l, test_ts_l, test_e_idx_l, test_label_l = src_l[valid_test_flag], tgt_l[valid_test_flag], ts_l[valid_test_flag], e_idx_l[valid_test_flag], label_l[valid_test_flag]
all_nodes = np.unique(np.hstack([train_src_l, train_tgt_l, val_src_l, val_tgt_l, test_src_l, test_tgt_l]))
if args.mode == 'i':
e_idx_l_inductive = np.arange(len(train_src_l) + len(val_src_l) + len(test_src_l))
train_e_idx_l = e_idx_l_inductive[:len(train_src_l)]
val_e_idx_l = e_idx_l_inductive[len(train_src_l):-len(test_src_l)]
test_e_idx_l = e_idx_l_inductive[-len(test_src_l):]
all_train_val_src_l, all_train_val_tgt_l, all_train_val_ts_l, all_train_val_e_idx_l, all_train_val_label_l = src_l[all_train_val_flag], tgt_l[all_train_val_flag], ts_l[all_train_val_flag], e_idx_l[all_train_val_flag], label_l[all_train_val_flag]
inductive_train_val_src_l, inductive_train_val_tgt_l, inductive_train_val_ts_l, inductive_train_val_e_idx_l, inductive_train_val_label_l = src_l[inductive_train_val_flag], tgt_l[inductive_train_val_flag], ts_l[inductive_train_val_flag], e_idx_l[inductive_train_val_flag], label_l[inductive_train_val_flag]
train_data = train_src_l, train_tgt_l, train_ts_l, train_e_idx_l, train_label_l
val_data = val_src_l, val_tgt_l, val_ts_l, val_e_idx_l, val_label_l
train_val_data = (train_data, val_data)
# model initialization
device = torch.device('cuda:{}'.format(str(args.gpu)) if torch.cuda.is_available() else 'cpu')
if n_feat is not None:
feat_dim = n_feat.shape[1]
else:
feat_dim = 0
if edge_feats is not None:
e_feat_dim = edge_feats.shape[1]
else:
e_feat_dim = 0
time_dim = TIME_DIM
model_dim = feat_dim + e_feat_dim + time_dim
hidden_dim = e_feat_dim + time_dim
num_raw = 2 + e_feat_dim
memory_dim = num_raw
num_neighbors = [1]
for i in range(NUM_HOP):
num_neighbors.extend([int(NUM_NEIGHBORS[i])])
total_start = time.time()
nlb = NLB(feat_dim, e_feat_dim, memory_dim, max_idx + 1, time_dim=TIME_DIM, n_head=ATTN_NUM_HEADS, num_neighbors=num_neighbors, dropout=DROP_OUT, attn_dropout=ATTN_DROPOUT,
get_checkpoint_path=get_checkpoint_path, get_ngh_store_path=get_ngh_store_path, get_self_rep_path=get_self_rep_path, get_prev_raw_path=get_prev_raw_path, verbosity=VERBOSITY,
n_hops=NUM_HOP, replace_prob=REPLACE_PROB, self_dim=SELF_DIM, device=device, nlb_node=NLB_NODE, data_name=DATA)
nlb.to(device)
if args.mode == 'i':
nlb.set_edge_features(edge_feats_inductive, train_e_idx_l, val_e_idx_l, test_e_idx_l, edge_feat_load_to_gpu_partition_size=EDGE_FEAT_LOAD_TO_GPU_PARTITION_SIZE, to_gpu=edge_feat_in_gpu)
else:
nlb.set_edge_features(edge_feats, train_e_idx_l, val_e_idx_l, test_e_idx_l, edge_feat_load_to_gpu_partition_size=EDGE_FEAT_LOAD_TO_GPU_PARTITION_SIZE, to_gpu=edge_feat_in_gpu)
nlb.set_node_features(node_feats, to_gpu=NODE_TO_GPU)
nlb.reset_store()
optimizer = torch.optim.Adam(nlb.parameters(), lr=LEARNING_RATE)
criterion = torch.nn.BCEWithLogitsLoss()
early_stopper = EarlyStopMonitor(tolerance=TOLERANCE)
# start train and val phases
train_val(train_val_data, nlb, args.mode, BATCH_SIZE, NUM_EPOCH, criterion, optimizer, early_stopper, logger, model_dim, n_hop=NUM_HOP, seed=SEED, eval_bs=EVAL_BS, all_nodes=all_nodes)
# final testing
print("_*"*50)
if args.mode == 'i':
nlb.reset_store(keep_self_rep=True)
nlb.set_edge_features(edge_feats, all_train_val_e_idx_l, None, None, edge_feat_load_to_gpu_partition_size=EDGE_FEAT_LOAD_TO_GPU_PARTITION_SIZE, to_gpu=edge_feat_in_gpu)
# # No more training, but need to load all previous interactions into the hash table for the final test
build_history_interactions('rebuild for {} nodes'.format(args.mode), nlb, all_train_val_src_l, all_train_val_tgt_l, all_train_val_ts_l, all_train_val_label_l, all_train_val_e_idx_l, bs=EVAL_BS, device=device)
nlb.set_edge_features(edge_feats_inductive, train_e_idx_l, val_e_idx_l, test_e_idx_l, edge_feat_load_to_gpu_partition_size=EDGE_FEAT_LOAD_TO_GPU_PARTITION_SIZE, to_gpu=edge_feat_in_gpu)
test_start = time.time()
test_acc, test_ap, test_f1, test_auc, predict_total_time = eval_one_epoch('test for {} nodes'.format(args.mode), nlb, test_src_l, test_tgt_l, test_ts_l, test_label_l, test_e_idx_l, bs=EVAL_BS, phase='test', mode=args.mode, device=device, all_nodes=all_nodes, eval_neg_samples=args.eval_neg_samples)
test_end = time.time()
logger.info('Test statistics: {} all nodes -- acc: {}, auc: {}, ap: {}, inference time: {}, total test time: {}'.format(args.mode, test_acc, test_auc, test_ap, predict_total_time, test_end - test_start))
test_new_new_acc, test_new_new_ap, test_new_new_auc, test_new_old_acc, test_new_old_ap, test_new_old_auc = [-1]*6
if args.mode == 'i':
inductive_auc.append(test_auc)
inductive_ap.append(test_ap)
else:
transductive_auc.append(test_auc)
transductive_ap.append(test_ap)
test_times.append(test_end - test_start)
inference_times.append(predict_total_time)
early_stoppers.append(early_stopper.best_epoch + 1)
# save model
logger.info('Saving NLB model ...')
torch.save(nlb.state_dict(), best_model_path[:-4] + str(run) + '.pth')
logger.info('NLB model saved')
# save one line result
save_oneline_result('log/', args, [test_acc, test_auc, test_ap, test_new_new_acc, test_new_new_ap, test_new_new_auc, test_new_old_acc, test_new_old_ap, test_new_old_auc])
total_end = time.time()
print("NLB experiment statistics:")
if args.mode == "t":
nlb_results(logger, transductive_auc, "transductive_auc")
nlb_results(logger, transductive_ap, "transductive_ap")
else:
nlb_results(logger, inductive_auc, "inductive_auc")
nlb_results(logger, inductive_ap, "inductive_ap")
nlb_results(logger, test_times, "test_times")
nlb_results(logger, inference_times, "inference_times")
nlb_results(logger, early_stoppers, "early_stoppers")
total_time.append(total_end - total_start)
nlb_results(logger, total_time, "total_time")