-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
318 lines (293 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import numpy as np
from tqdm import tqdm
import math
from sklearn.metrics import average_precision_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_auc_score
from eval import *
import logging
import random
import time
from utils import *
logging.getLogger('matplotlib.font_manager').disabled = True
logging.getLogger('matplotlib.ticker').disabled = True
import os
from pyJoules.handler.csv_handler import CSVHandler
from pyJoules.energy_meter import measure_energy
from parser import *
args, sys_argv = get_args()
csv_handler = CSVHandler('{}_{}_energy.csv'.format(args.data, args.nlb_node))
@measure_energy(handler=csv_handler)
def train_one_epoch(model, seed, seeds, logger, epoch, num_batch, bs, num_instance, train_e_idx_l, idx_list,
train_src_l, train_tgt_l, train_bad_l, train_ts_l, optimizer, device, criterion, train_time, n_hop,
mode, val_src_l, val_tgt_l, val_ts_l, val_src_label_l, val_e_idx_l, eval_bs, early_stopper, all_nodes):
train_start = time.time()
model.set_seed(seed)
set_random_seed(seed)
seeds.append(seed)
model.clear_store()
model.reset_store()
acc, ap, f1, auc, m_loss = [], [], [], [], []
logger.info('start {} epoch'.format(epoch))
model.reset_edge_feat_partition_to_cpu()
model.phase = 'train'
should_break = False
for k in tqdm(range(num_batch)):
# generate training mini-batch
s_idx = k * bs
e_idx = min(num_instance, s_idx + bs)
if s_idx == e_idx:
continue
e_start = train_e_idx_l[s_idx]
model.check_idx_and_load_edge_feat_partition_to_gpu(e_start)
batch_idx = idx_list[s_idx:e_idx] # shuffle training samples for each batch
# np.random.shuffle(batch_idx)
src_l_cut, tgt_l_cut, bad_l_cut = train_src_l[batch_idx].to(dtype=torch.long, device=device, non_blocking=True), train_tgt_l[batch_idx].to(dtype=torch.long, device=device, non_blocking=True), train_bad_l[batch_idx].to(dtype=torch.long, device=device, non_blocking=True)
ts_l_cut = train_ts_l[batch_idx].to(dtype=torch.float, device=device, non_blocking=True)
e_l_cut = train_e_idx_l[batch_idx].to(dtype=torch.long, device=device, non_blocking=True)
size = len(src_l_cut)
# feed in the data and learn from error
optimizer.zero_grad()
model.train()
pos_prob, neg_prob, predict_time = model.contrast(src_l_cut, tgt_l_cut, bad_l_cut, ts_l_cut, e_l_cut) # the core training code
pos_label = torch.ones(size, dtype=torch.float, device=device, requires_grad=False)
neg_label = torch.zeros(size, dtype=torch.float, device=device, requires_grad=False)
loss = criterion(pos_prob, pos_label) + criterion(neg_prob, neg_label)
loss.backward()
optimizer.step()
# collect training results
m_loss.append(loss.item())
train_end = time.time()
train_time.append(train_end - train_start)
nlb_results(logger, train_time, "train_time")
# validation phase use all information
val_start = time.time()
val_acc, val_ap, val_f1, val_auc, predict_total_time = eval_one_epoch('val for {} nodes'.format(mode), model, val_src_l,
val_tgt_l, val_ts_l, val_src_label_l, val_e_idx_l, bs=eval_bs, phase="val", mode=mode, device=device, all_nodes=all_nodes)
val_end = time.time()
logger.info('epoch: {}:'.format(epoch))
logger.info('epoch mean loss: {}'.format(np.mean(m_loss)))
logger.info('train acc: {}, val acc: {}'.format(np.mean(acc), val_acc))
logger.info('train auc: {}, val auc: {}'.format(np.mean(auc), val_auc))
logger.info('train ap: {}, val ap: {}'.format(np.mean(ap), val_ap))
logger.info('train time: {}, val time: {}'.format(train_end - train_start, predict_total_time))
# early stop check and checkpoint saving
if early_stopper.early_stop_check(val_ap):
logger.info('No improvment over {} epochs, stop training'.format(early_stopper.max_round))
logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
best_checkpoint_path = model.get_checkpoint_path(early_stopper.best_epoch)
model.load_state_dict(torch.load(best_checkpoint_path))
best_ngh_store = []
model.clear_store()
for i in range(n_hop + 1):
best_ngh_store_path = model.get_ngh_store_path(early_stopper.best_epoch, i)
best_ngh_store.append(torch.load(best_ngh_store_path))
model.set_neighborhood_store(best_ngh_store)
best_self_rep_path = model.get_self_rep_path(early_stopper.best_epoch)
best_prev_raw_path = model.get_prev_raw_path(early_stopper.best_epoch)
best_self_rep = torch.load(best_self_rep_path)
best_prev_raw = torch.load(best_prev_raw_path)
model.set_self_rep(best_self_rep, best_prev_raw)
model.set_seed(seeds[early_stopper.best_epoch])
logger.info(f'Loaded the best model at epoch {early_stopper.best_epoch} for inference')
model.eval()
should_break = True
else:
for i in range(n_hop + 1):
torch.save(model.neighborhood_store[i], model.get_ngh_store_path(epoch, i))
torch.save(model.state_dict(), model.get_checkpoint_path(epoch))
torch.save(model.self_and_edge_rep, model.get_self_rep_path(epoch))
torch.save(model.prev_raw, model.get_prev_raw_path(epoch))
# delete models from the earlier epochs
legacy_epoch = epoch - early_stopper.max_round
if legacy_epoch >= 0:
for i in range(n_hop + 1):
os.remove(model.get_ngh_store_path(legacy_epoch, i))
os.remove(model.get_checkpoint_path(legacy_epoch))
os.remove(model.get_self_rep_path(legacy_epoch))
os.remove(model.get_prev_raw_path(legacy_epoch))
return should_break
def train_val(train_val_data, model, mode, bs, epochs, criterion, optimizer, early_stopper, logger, model_dim, n_hop=1, seed=2023, eval_bs=50, all_nodes=None):
# unpack the data, prepare for the training
train_data, val_data = train_val_data
train_src_l, train_tgt_l, train_ts_l, train_e_idx_l, train_src_label_l = train_data
val_src_l, val_tgt_l, val_ts_l, val_e_idx_l, val_src_label_l = val_data
num_instance = len(train_src_l)
device = model.device
if mode == 't':
train_bad_l = np.random.randint(1, model.total_nodes, size=num_instance)
else:
train_bad_l = np.random.choice(all_nodes, size=num_instance)
train_bad_l = torch.from_numpy(train_bad_l)
train_src_l = torch.from_numpy(train_src_l)
train_tgt_l = torch.from_numpy(train_tgt_l)
train_ts_l = torch.from_numpy(train_ts_l)
train_e_idx_l = torch.from_numpy(train_e_idx_l)
num_batch = math.ceil(num_instance / bs)
logger.info('num of training instances: {}'.format(num_instance))
logger.info('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
seeds = []
seed = seed
train_time = []
for epoch in range(epochs):
should_break = train_one_epoch(model, seed, seeds, logger, epoch, num_batch, bs, num_instance, train_e_idx_l, idx_list,
train_src_l, train_tgt_l, train_bad_l, train_ts_l, optimizer, device, criterion, train_time, n_hop,
mode, val_src_l, val_tgt_l, val_ts_l, val_src_label_l, val_e_idx_l, eval_bs, early_stopper, all_nodes)
if should_break:
break
csv_handler.save_data()
def generate_temporal_embeddings(data, model, mode, bs, logger, model_dim, emb_file_stub, n_hop=2, seed=2023):
logger.info('Generating temporal embeddings...')
emb = list()
data_row = list()
node_edges = list()
# unpack the data, prepare for the training
src_l, tgt_l, ts_l, e_idx_l, src_label_l, tgt_label_l = data
device = model.device
num_instance = len(src_l)
num_batch = math.ceil(num_instance / bs)
logger.info('num of temporal instances: {}'.format(num_instance))
logger.info('num of batches: {}'.format(num_batch))
idx_list = np.arange(num_instance)
seeds = []
seed = seed
train_time = []
model.eval()
train_start = time.time()
model.set_seed(seed)
set_random_seed(seed)
seeds.append(seed)
model.reset_store()
model.reset_edge_feat_partition_to_cpu()
model.phase = 'train'
for k in tqdm(range(num_batch)):
# generate training mini-batch
s_idx = k * bs
e_idx = min(num_instance, s_idx + bs)
if s_idx == e_idx:
continue
batch_idx = idx_list[s_idx:e_idx] # shuffle training samples for each batch
np.random.shuffle(batch_idx)
src_l_cut, tgt_l_cut = src_l[batch_idx], tgt_l[batch_idx]
ts_l_cut = ts_l[batch_idx]
e_l_cut = e_idx_l[batch_idx]
e_start = e_idx_l[s_idx]
src_label_l_cut = src_label_l[batch_idx]
tgt_label_l_cut = tgt_label_l[batch_idx]
model.check_idx_and_load_edge_feat_partition_to_gpu(e_start)
size = len(src_l_cut)
src_th = torch.from_numpy(src_l_cut).to(dtype=torch.long, device=device)
tgt_th = torch.from_numpy(tgt_l_cut).to(dtype=torch.long, device=device)
cut_time_th = torch.from_numpy(ts_l_cut).to(dtype=torch.float, device=device)
e_idx_th = torch.from_numpy(e_l_cut).to(dtype=torch.long, device=device)
e_feats = model.fetch_edge_feat(e_idx_th)
with torch.no_grad():
collect_emb_start = time.time()
embeddings, updated_mem_h0, updated_mem_h1, n_feats = model.updated_embeddings(size, src_th, tgt_th, tgt_th, cut_time_th, e_feats)
collect_emb_end = time.time()
## Update memory after prediction made
model.update_memory(src_th, tgt_th, e_feats, cut_time_th, embeddings, updated_mem_h1, size)
decoder_input = embeddings[:2 * size]
label_l_cut = np.concatenate((src_label_l_cut, tgt_label_l_cut), 0)
labels_batch_torch = torch.from_numpy(label_l_cut).type(torch.LongTensor).to(device)
condition = labels_batch_torch != -1
labels_batch_torch = labels_batch_torch[condition]
label_l_cut = labels_batch_torch.cpu().numpy()
decoder_input = decoder_input[condition]
emb.append(decoder_input.cpu())
node_id_to_save = torch.cat((src_th, tgt_th), dim=0)[condition]
e_idx_to_save = torch.cat((e_idx_th, e_idx_th), dim=0)[condition]
cut_time_to_save = torch.cat((cut_time_th, cut_time_th), dim=0)[condition]
node_edges.append(torch.cat((node_id_to_save.unsqueeze(1).cpu(),e_idx_to_save.unsqueeze(1).cpu()), dim = 1))
data_row.append(torch.cat((cut_time_to_save.unsqueeze(1).float().cpu(), labels_batch_torch.unsqueeze(1).float().cpu()), dim = 1))
emb = torch.cat(emb, dim=0)
rows = torch.cat(data_row, dim=0)
node_edges = torch.cat(node_edges, dim=0)
model.reset_edge_feat_partition_to_cpu()
return emb, rows, node_edges
def train_val_node_with_embed(train_val_emb, train_val_data, train_val_node_edges, bs, mode, epochs, criterion, optimizer, early_stopper, logger,
decoder, decoder_optimizer, decoder_loss_criterion, device, seed=2023, num_classes=1, eval_bs=50):
# unpack the data, prepare for the training
train_data, val_data = train_val_data
train_node_edges, val_node_edges = train_val_node_edges
train_ts_th, train_label_th = train_data[:, 0], train_data[:, 1]
train_emb, val_emb = train_val_emb
num_instance = len(train_ts_th)
num_batch = math.ceil(num_instance / bs)
logger.info('num of training instances: {}'.format(num_instance))
logger.info('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
seeds = []
seed = seed
train_time = []
for epoch in range(epochs):
train_start = time.time()
acc, ap, f1, auc, m_loss, labels, preds = [], [], [], [], [], [], []
np.random.shuffle(idx_list) # shuffle the training samples for every epoch
logger.info('start {} epoch'.format(epoch))
decoder.train()
loss = 0
for k in tqdm(range(num_batch)):
# generate training mini-batch
s_idx = k * bs
e_idx = min(num_instance, s_idx + bs)
if s_idx == e_idx:
continue
batch_idx = idx_list[s_idx:e_idx] # shuffle training samples for each batch
np.random.shuffle(batch_idx)
ts_th_cut = train_ts_th[batch_idx].to(dtype=torch.float, device=device)
emb_cut = train_emb[batch_idx].to(device=device)
label_th_cut = train_label_th[batch_idx].to(dtype=torch.long, device=device)
decoder_optimizer.zero_grad()
decoder.train()
predict_start = time.time()
pred_score = decoder(emb_cut)
predict_end = time.time()
predict_time = predict_end - predict_start
decoder_loss = decoder_loss_criterion(pred_score, label_th_cut)
decoder_loss.backward()
decoder_optimizer.step()
# collect training results
with torch.no_grad():
decoder.eval()
if num_classes == 2:
pred_score = pred_score.softmax(dim=1)[:, 1].cpu().numpy()
pred_label = pred_score > 0.5
preds.append(pred_score)
else:
pred_score = pred_score.cpu().numpy()
pred_label = np.argmax(pred_score, axis=1)
preds.append(pred_label)
true_label = label_th_cut.cpu().numpy()
m_loss.append(decoder_loss.item())
labels.append(true_label)
true_l = np.concatenate(labels, -1).astype(int)
pred_l = np.concatenate(preds, -1)
if num_classes == 2:
ap.append(average_precision_score(true_l, pred_l))
auc.append(roc_auc_score(true_l, pred_l))
else:
ap.append(0)
auc.append(0)
train_end = time.time()
train_time.append(train_end - train_start)
nlb_results(logger, train_time, "train_time")
# validation phase use all information
val_start = time.time()
val_acc, val_ap, val_f1, val_auc, predict_total_time = eval_node_with_embed('val for {} nodes'.format(mode),
decoder, val_emb, val_data, val_node_edges, device=device, num_classes=num_classes, bs=eval_bs)
val_end = time.time()
logger.info('epoch: {}:'.format(epoch))
logger.info('epoch mean loss: {}'.format(np.mean(m_loss)))
logger.info('train acc: {}, val acc: {}'.format(np.mean(acc), val_acc))
logger.info('train auc: {}, val auc: {}'.format(np.mean(auc), val_auc))
logger.info('train ap: {}, val ap: {}'.format(np.mean(ap), val_ap))
logger.info('train f1: {}, val f1: {}'.format(np.mean(f1), val_f1))
logger.info('train time: {}, val time: {}'.format(train_end - train_start, predict_total_time))
if num_classes == 2:
early_stop_metric = val_auc
else:
early_stop_metric = val_f1
torch.save(decoder.state_dict(), decoder.get_checkpoint_path(epoch))