forked from PaddlePaddle/PLSC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_weight.py
56 lines (52 loc) · 1.83 KB
/
extract_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Convert MoCo Pre-Traind Model to DEiT')
parser.add_argument(
'--input',
default='',
type=str,
metavar='PATH',
required=True,
help='path to moco pre-trained checkpoint')
parser.add_argument(
'--output',
default='',
type=str,
metavar='PATH',
required=True,
help='path to output checkpoint in DEiT format')
args = parser.parse_args()
print(args)
# load input
checkpoint = paddle.load(args.input)
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only base_encoder up to before the embedding layer
if k.startswith('base_encoder') and not k.startswith(
'base_encoder.head'):
# remove prefix
state_dict[k[len("base_encoder."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
# make output directory if necessary
output_dir = os.path.dirname(args.output)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# save to output
paddle.save(state_dict, args.output)