-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm_wrapper.py
89 lines (71 loc) · 4.05 KB
/
mm_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from torch import nn
import torchvision.models as models
_HIDDEN_STATES_START_POSITION = 2
class MMWav2Vec2Model(nn.Module):
def __init__(self, wav2vec2ctc):
super(MMWav2Vec2Model, self).__init__()
# Wav2Vec2 Model
self.wav2vec2ctc = wav2vec2ctc
# Video Model
self.video_1d_resnet_18 = models.resnet18(pretrained=True)
self.video_1d_resnet_18.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
self.video_1d_resnet_18.fc = nn.Identity()
self.video_time_conv = nn.Conv1d(in_channels=512, out_channels=1024, kernel_size=3, padding='same')
self.video_lm_head = nn.Linear(1024, self.wav2vec2ctc.config.vocab_size)
def gradient_checkpointing_enable(self):
return self.wav2vec2ctc.gradient_checkpointing_enable()
def encode_audio(self, input_values):
outputs = self.wav2vec2ctc(input_values)
return outputs
def encode_video(self, video_values):
batch_size = video_values.shape[0]
seq_len, n_channel = video_values.shape[1], video_values.shape[2]
width, height = video_values.shape[3], video_values.shape[4]
video_values = video_values.reshape(-1, n_channel, width, height) # [B, L, C, W, H] => [B*L, C, W, H]
video_output = self.video_1d_resnet_18(video_values)# [B*L, C, W, H] => [B*L, D]
video_output = video_output.reshape(batch_size, seq_len, -1) # [B*L, D] => [B, L, D]
video_output = self.video_time_conv(video_output.transpose(1, 2)) # [B, L, D] => [B, D', L]
video_logits = self.video_lm_head(video_output.transpose(1, 2)) # [B, D', L] => [B, L, Vocab]
return video_logits
def forward(self, input_values, labels=None, attention_mask=None, video_values=None, return_dict=False, *args, **kwargs):
# encode audio
outputs = self.encode_audio(input_values, *args, **kwargs)
logits = outputs.get('logits')
if video_values is not None:
# encode video
video_logits = self.encode_video(video_values, *args, **kwargs)
# fuse multimodal
video_logits = video_logits.repeat(1,2,1) # Convert 25 FPS to 50 FPS
logits = logits + video_logits[:,:logits.shape[1],:] # Fuse with Audio
if labels is not None:
if labels.max() >= self.wav2vec2ctc.config.vocab_size:
raise ValueError(f"Label values must be < vocab_size: {self.wav2vec2ctc.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self.wav2vec2ctc._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.wav2vec2ctc.config.pad_token_id,
reduction=self.wav2vec2ctc.config.ctc_loss_reduction,
zero_infinity=self.wav2vec2ctc.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)