-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train_mm.sh
80 lines (76 loc) · 4.99 KB
/
run_train_mm.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Multimodal
CUDA_VISIBLE_DEVICES=1 python train.py --output_dir=./save_mm/0 \
--model_name_or_path=ctl/wav2vec2-large-xlsr-cantonese \
--train_manifest_path=dataset/mm_train_metadata.csv \
--valid_manifest_path=dataset/mm_valid_metadata.csv \
--test_manifest_path=dataset/mm_test_metadata.csv \
--num_workers=8 --preprocessing_num_workers=8 --use_video \
--audio_column_name=audio_path --text_column_name=text_path --video_column_name=lip_image_path \
--per_device_train_batch_size=8 --per_device_eval_batch_size=8 --gradient_accumulation_steps 2 \
--dataloader_num_workers=32 --dataloader_pin_memory \
--seed=0 --num_train_epochs=20 --learning_rate=5e-5 \
--fp16 --fp16_backend=amp \
--logging_strategy=steps --logging_steps=10 --report_to=tensorboard \
--evaluation_strategy=epoch --eval_steps=1 --eval_accumulation_steps=100 \
--save_steps=1 --save_strategy=epoch --save_total_limit=1 \
--metric_for_best_model=mer --greater_is_better=False --load_best_model_at_end=True
CUDA_VISIBLE_DEVICES=1 python train.py --output_dir=./save_mm/1 \
--model_name_or_path=ctl/wav2vec2-large-xlsr-cantonese \
--train_manifest_path=dataset/mm_train_metadata.csv \
--valid_manifest_path=dataset/mm_valid_metadata.csv \
--test_manifest_path=dataset/mm_test_metadata.csv \
--num_workers=8 --preprocessing_num_workers=8 --use_video \
--audio_column_name=audio_path --text_column_name=text_path --video_column_name=lip_image_path \
--per_device_train_batch_size=8 --per_device_eval_batch_size=8 --gradient_accumulation_steps 2 \
--dataloader_num_workers=32 --dataloader_pin_memory \
--seed=1 --num_train_epochs=20 --learning_rate=5e-5 \
--fp16 --fp16_backend=amp \
--logging_strategy=steps --logging_steps=10 --report_to=tensorboard \
--evaluation_strategy=epoch --eval_steps=1 --eval_accumulation_steps=100 \
--save_steps=1 --save_strategy=epoch --save_total_limit=1 \
--metric_for_best_model=mer --greater_is_better=False --load_best_model_at_end=True
CUDA_VISIBLE_DEVICES=1 python train.py --output_dir=./save_mm/2 \
--model_name_or_path=ctl/wav2vec2-large-xlsr-cantonese \
--train_manifest_path=dataset/mm_train_metadata.csv \
--valid_manifest_path=dataset/mm_valid_metadata.csv \
--test_manifest_path=dataset/mm_test_metadata.csv \
--num_workers=8 --preprocessing_num_workers=8 --use_video \
--audio_column_name=audio_path --text_column_name=text_path --video_column_name=lip_image_path \
--per_device_train_batch_size=8 --per_device_eval_batch_size=8 --gradient_accumulation_steps 2 \
--dataloader_num_workers=32 --dataloader_pin_memory \
--seed=2 --num_train_epochs=20 --learning_rate=5e-5 \
--fp16 --fp16_backend=amp \
--logging_strategy=steps --logging_steps=10 --report_to=tensorboard \
--evaluation_strategy=epoch --eval_steps=1 --eval_accumulation_steps=100 \
--save_steps=1 --save_strategy=epoch --save_total_limit=1 \
--metric_for_best_model=mer --greater_is_better=False --load_best_model_at_end=True
CUDA_VISIBLE_DEVICES=1 python train.py --output_dir=./save_mm/3 \
--model_name_or_path=ctl/wav2vec2-large-xlsr-cantonese \
--train_manifest_path=dataset/mm_train_metadata.csv \
--valid_manifest_path=dataset/mm_valid_metadata.csv \
--test_manifest_path=dataset/mm_test_metadata.csv \
--num_workers=8 --preprocessing_num_workers=8 --use_video \
--audio_column_name=audio_path --text_column_name=text_path --video_column_name=lip_image_path \
--per_device_train_batch_size=8 --per_device_eval_batch_size=8 --gradient_accumulation_steps 2 \
--dataloader_num_workers=32 --dataloader_pin_memory \
--seed=3 --num_train_epochs=20 --learning_rate=5e-5 \
--fp16 --fp16_backend=amp \
--logging_strategy=steps --logging_steps=10 --report_to=tensorboard \
--evaluation_strategy=epoch --eval_steps=1 --eval_accumulation_steps=100 \
--save_steps=1 --save_strategy=epoch --save_total_limit=1 \
--metric_for_best_model=mer --greater_is_better=False --load_best_model_at_end=True
CUDA_VISIBLE_DEVICES=1 python train.py --output_dir=./save_mm/4 \
--model_name_or_path=ctl/wav2vec2-large-xlsr-cantonese \
--train_manifest_path=dataset/mm_train_metadata.csv \
--valid_manifest_path=dataset/mm_valid_metadata.csv \
--test_manifest_path=dataset/mm_test_metadata.csv \
--num_workers=8 --preprocessing_num_workers=8 --use_video \
--audio_column_name=audio_path --text_column_name=text_path --video_column_name=lip_image_path \
--per_device_train_batch_size=8 --per_device_eval_batch_size=8 --gradient_accumulation_steps 2 \
--dataloader_num_workers=32 --dataloader_pin_memory \
--seed=4 --num_train_epochs=20 --learning_rate=5e-5 \
--fp16 --fp16_backend=amp \
--logging_strategy=steps --logging_steps=10 --report_to=tensorboard \
--evaluation_strategy=epoch --eval_steps=1 --eval_accumulation_steps=100 \
--save_steps=1 --save_strategy=epoch --save_total_limit=1 \
--metric_for_best_model=mer --greater_is_better=False --load_best_model_at_end=True