-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
365 lines (311 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os, sys
import logging
import numpy as np
import pandas as pd
import argparse
import glob
import torchaudio
import torch
import re
import json
import librosa
from datasets import DatasetDict
import torchvision.transforms as T
import torchvision
from transformers import (
set_seed,
Wav2Vec2Processor,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForCTC,
Wav2Vec2Config,
Trainer,
TrainingArguments,
HfArgumentParser,
EarlyStoppingCallback
)
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import pickle
import editdistance
import jieba
from itertools import chain
import transformers
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from args_helper import ModelArguments, DataArguments
import datasets
from datasets import load_from_disk, set_caching_enabled
from utils import CHARS_TO_IGNORE, remove_special_characters, extract_all_chars, tokenize_for_mer, tokenize_for_cer
from data_utils import speech_file_to_array_fn, load_dataset
from data_collator_ctc import DataCollatorCTCWithPadding, DataCollatorMMCTCWithPadding
from mm_wrapper import MMWav2Vec2Model
set_caching_enabled(True)
logger = logging.getLogger(__name__)
#####
# Main Functions
#####
def run(model_args, data_args, training_args):
###
# Prepare Processor & Model
###
training_args.gradient_checkpointing = True
print('Load Wav2Vec2 model and processor...')
config = Wav2Vec2Config.from_pretrained(model_args.model_name_or_path)
config.update({
"mask_time_prob": model_args.mask_time_prob,
"mask_time_length": model_args.mask_time_length,
"mask_feature_prob": model_args.mask_feature_prob,
"mask_feature_length": model_args.mask_feature_length,
"gradient_checkpointing": training_args.gradient_checkpointing,
})
processor = Wav2Vec2Processor.from_pretrained(model_args.model_name_or_path)
wav2vec2ctc = Wav2Vec2ForCTC.from_pretrained(model_args.model_name_or_path, config=config)
if data_args.use_video:
model = MMWav2Vec2Model(wav2vec2ctc)
else:
model = wav2vec2ctc
model.cuda()
if data_args.use_video:
cache_file = './cache_mm/preprocess_data.arrow'
cache_folder = './cache_mm'
else:
cache_file = './cache/preprocess_data.arrow'
cache_folder = './cache'
if not os.path.exists(cache_file):
base_path = '/'.join(data_args.train_manifest_path.split('/')[:-1])
###
# Prepare Dataset
###
raw_datasets = DatasetDict()
print('Loading train dataset...')
raw_datasets["train"] = load_dataset(data_args.train_manifest_path, data_args.num_workers,
data_args.audio_column_name, data_args.text_column_name, data_args.video_column_name)
print('Loading validation dataset...')
raw_datasets["valid"] = load_dataset(data_args.valid_manifest_path, data_args.num_workers,
data_args.audio_column_name, data_args.text_column_name, data_args.video_column_name)
print('Loading test dataset...')
raw_datasets["test"] = load_dataset(data_args.test_manifest_path, data_args.num_workers,
data_args.audio_column_name, data_args.text_column_name, data_args.video_column_name)
print('Preprocess dataset...')
# Remove ignorable characters
print('Removing ignorable characters')
chars_to_ignore_re = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
def remove_special_characters(batch):
if chars_to_ignore_re is not None:
batch['transcription'] = re.sub(chars_to_ignore_re, "", batch['transcription']).lower() + " "
else:
batch['transcription'] = batch['transcription'].lower() + " "
return batch
with training_args.main_process_first(desc="dataset map special characters removal"):
raw_datasets = raw_datasets.map(
remove_special_characters,
num_proc=data_args.preprocessing_num_workers,
desc="remove special characters from datasets",
load_from_cache_file=True,
cache_file_names={
"train": f"{cache_folder}/train_clean.arrow",
"valid": f"{cache_folder}/valid_clean.arrow",
"test": f"{cache_folder}/test_clean.arrow"
}
)
# Preprocess audio sample and label text
print('Vectorize dataset...')
def prepare_dataset(batch):
# Preprocess audio
batch["input_values"] = processor(batch["speech_sample"]).input_values[0]
# Preprocess text
with processor.as_target_processor():
batch["labels"] = processor(batch['transcription']).input_ids
return batch
removable_column_names = raw_datasets["train"].column_names
if data_args.use_video:
removable_column_names.remove('video_path')
with training_args.main_process_first(desc="dataset map preprocessing"):
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=removable_column_names,
num_proc=data_args.preprocessing_num_workers,
desc="preprocess datasets",
load_from_cache_file=False,
cache_file_names={
"train": f"{cache_folder}/train_vec.arrow",
"valid": f"{cache_folder}/valid_vec.arrow",
"test": f"{cache_folder}/test_vec.arrow"
}
)
# Preprocess video sample
if data_args.use_video:
print('Load video data...')
img_transforms = T.Compose([
T.Grayscale(num_output_channels=1),
T.Resize((32,32))
])
def load_video_data(batch):
image_buffers = []
video_path = batch["video_path"]
for image_path in glob.glob(f'{base_path}/{video_path}/*.jpg'):
image = torchvision.io.read_image(image_path) / 255
image = img_transforms(image)
image_buffers.append(image)
batch["video_values"] = image_buffers # L, C, H, W
return batch
with training_args.main_process_first(desc="dataset map preprocessing"):
vectorized_datasets = vectorized_datasets.map(
load_video_data,
remove_columns=['video_path'],
num_proc=data_args.preprocessing_num_workers,
desc="preprocess datasets",
load_from_cache_file=False,
cache_file_names={
"train": f"{cache_folder}/train_vec.arrow",
"valid": f"{cache_folder}/valid_vec.arrow",
"test": f"{cache_folder}/test_vec.arrow"
}
)
vectorized_datasets.save_to_disk(f'{cache_folder}/preprocess_data.arrow')
else:
print('Loading cached dataset...')
vectorized_datasets = datasets.load_from_disk(f'{cache_folder}/preprocess_data.arrow')
if data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
return
###
# Prepare Data Collator and Trainer
###
print('Preparing Trainer...')
# Instantiate custom data collator
if data_args.use_video:
data_collator = DataCollatorMMCTCWithPadding(processor=processor)
else:
data_collator = DataCollatorCTCWithPadding(processor=processor)
# Define compute metric function
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_strs = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_strs = processor.batch_decode(pred.label_ids, group_tokens=False)
mixed_distance, mixed_tokens = 0, 0
char_distance, char_tokens = 0, 0
pred_strs = list(map(lambda pred_str: pred_str[:-1].strip(), pred_strs))
label_strs = list(map(lambda label_str: label_str.replace('[UNK]','#'), label_strs))
for pred_str, label_str in zip(pred_strs, label_strs):
# Calculate
m_pred = tokenize_for_mer(pred_str)
m_ref = tokenize_for_mer(label_str)
mixed_distance += editdistance.distance(m_pred, m_ref)
mixed_tokens += len(m_ref)
c_pred = tokenize_for_cer(pred_str)
c_ref = tokenize_for_cer(label_str)
char_distance += editdistance.distance(c_pred, c_ref)
char_tokens += len(c_ref)
mer = mixed_distance / mixed_tokens
cer = char_distance / char_tokens
f = open(f'{training_args.output_dir}/valid.results', 'w')
f.writelines([item+'\n' for item in pred_strs])
f.close()
f = open(f'{training_args.output_dir}/valid.label', 'w')
f.writelines([item+'\n' for item in label_strs])
f.close()
return {"mer": mer, "cer": cer}
# Initialize Trainer
trainer = Trainer(
train_dataset=vectorized_datasets["train"],
eval_dataset=vectorized_datasets["valid"],
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
callbacks = [EarlyStoppingCallback(early_stopping_patience=5)]
)
###
# Training Phase
###
print('*** Training Phase ***')
# use last checkpoint if exist
if os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank):
processor.save_pretrained(training_args.output_dir)
metrics = train_result.metrics
metrics["train_samples"] = len(vectorized_datasets["train"])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
###
# Evaluation Phase
###
results = {}
logger.info("*** Evaluation Phase ***")
metrics = trainer.evaluate(eval_dataset=vectorized_datasets["valid"])
metrics["eval_samples"] = len(vectorized_datasets["valid"])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
pickle.dump(metrics, open(f'{training_args.output_dir}/results.pkl', 'wb'))
print('=== Valid Performance ===')
for k, v in metrics.items():
print('{:>30}: {:<50}'.format(k, str(v)).center(80))
#####
# Entry Point
#####
def main():
###
# Parsing & Initialization
###
# Parse argument
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Set random seed
set_seed(training_args.seed)
# Detect last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
###
# Prepare logger
###
# Init logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to warn of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity(transformers.logging.WARNING)
logger.info("Training/evaluation parameters %s", training_args)
###
# RUN RUN RUN!!!
###
run(model_args, data_args, training_args)
if __name__ == '__main__':
main()