-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path6_Integral.tex
57 lines (46 loc) · 3.16 KB
/
6_Integral.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Integral
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Integralrechnung\formelbuchviolet{492}}
\subsection{Bestimmtes Integral\formelbuchviolet{505}}
$I = \int\limits_{a}^{b}{f(\widetilde{x})}d\widetilde{x} = \lim\limits_{d(Z) \rightarrow 0}S(Z) = \lim\limits_{d(Z) \rightarrow 0}O(Z) = \lim\limits_{d(Z) \rightarrow 0}U(Z) $ \\
$x$: Integrationsver"anderliche, $f$: Integranden, $[a,b]$: Integrationsintervall, $a/b$: untere bzw. obere Integrationsgrenze
\subsection{Integrierbarkeit}
\begin{minipage}[c]{10cm}
\begin{center}
\includegraphics[width=6cm]{./bilder/integral_mengen.png}
\end{center}
\end{minipage}
\begin{minipage}[c]{7cm}
\textbf{Schranken vom Integral:}\\
$g_1(x) \leq f(x) \leq g_2(x)$\\
$\int\limits_{a}^{b} g_1(\widetilde{x}) d\widetilde{x} \leq \int\limits_{a}^{b} f(\widetilde{x}) d\widetilde{x} \leq \int\limits_{a}^{b} g_2(\widetilde{x}) d\widetilde{x}$
\end{minipage}
\subsection{Integralregeln\formelbuchviolet{494}}
$\int\limits_a^b \widetilde{x}^n d\widetilde{x}=\frac{1}{n+1}(b^{n+1}-a^{n+1})$
\subsection{Fl"acheninhalt\formelbuchviolet{507}}
Inhalt der Fl"ache unter dem Graphen $f: A = \int\limits_a^b |f(\widetilde{x})| d\widetilde{x}$ \\
$A = A_1 - A_2 = \int\limits_a^b f_1(\widetilde{x}) d\widetilde{x} - \int\limits_a^b f_2{\widetilde{x}} d\widetilde{x} \qquad \text{gilt auch wenn die Funktionen }f_1 \text{ oder }f_2 \text{ negativ werden.}$
\subsection{Mittelwertsatz\formelbuchviolet{509}}
$f$ auf $[a,b] \mbox{ stetig} \Rightarrow \mbox{ mind. eine Stelle } \xi \in (a,b)\mbox{ mit } \int\limits_a^b{f(\widetilde{x})}d\widetilde{x}=(b-a)f(\xi)
\Rightarrow h = \frac{1}{b-a} \int\limits_a^b{f(\widetilde{x})}d\widetilde{x}$ \\
$h \hat{=}$ Mittelwert der Funktion
\subsection{Integralfunktion}
$c \in [a,b]$ und $f(x)$ "uber $[a,b]$ integrierbar: $I: x \mapsto I(x) = \int\limits_c^x{f(\widetilde{t})}d\widetilde{t}$
\subsubsection{Differenzierbarkeit\formelbuchviolet{508}}
\begin{minipage}[t]{9.5cm}
$ \frac{d}{dx} \int\limits_{a(x)}^{b(x)} f(\widetilde{t}) d\widetilde{t} = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x) $
\end{minipage}
\begin{minipage}[t]{5cm}
$ \qquad \frac{d}{dx} \int\limits_c^x f(\widetilde{t})d\widetilde{t} = f(x)$
\end{minipage}
\subsection{Unbestimmtes Integral\formelbuchviolet{492}}
$F(x) + C = \int{f(\widetilde{x})}d\widetilde{x}$
\subsection{Stammfunktion\formelbuchviolet{492}}
Jede auf $[a,b]$ differenzierbare Funktion $F$ nennt man Stammfunktion, wenn $F'=f$.\\
$I(x) \subset F(x)$
\subsection{Rechenregeln\formelbuchviolet{495}}
\begin{tabular}{l c}
$\int\limits_a^b f(\widetilde{x}) d\widetilde{x} = F(b) - F(a)$ & $|\int\limits_a^b f(x) dx| \leq \int\limits_a^b |f(\widetilde{x})| d\widetilde{x}$\\
$\int\limits_a^b f(\widetilde{x}) d\widetilde{x} = \int\limits_0^b f(\widetilde{x}) d\widetilde{x} - \int\limits_0^a f(\widetilde{x})d\widetilde{x} = \int\limits_0^b f(\widetilde{x}) d\widetilde{x} - (-1) \cdot \int\limits_a^0 f(\widetilde{x})d\widetilde{x}$
\end{tabular}