-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathfs_main.py
executable file
·324 lines (274 loc) · 11 KB
/
fs_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
'''Train Adversarially Robust Models with Feature Scattering'''
from __future__ import print_function
import time
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.autograd.gradcheck import zero_gradients
import copy
from torch.autograd import Variable
from PIL import Image
import os
import argparse
import datetime
from tqdm import tqdm
from models import *
import utils
from utils import softCrossEntropy
from utils import one_hot_tensor
from attack_methods import Attack_FeaScatter
torch.set_printoptions(threshold=10000)
np.set_printoptions(threshold=np.inf)
parser = argparse.ArgumentParser(description='Feature Scatterring Training')
# add type keyword to registries
parser.register('type', 'bool', utils.str2bool)
parser.add_argument('--resume',
'-r',
action='store_true',
help='resume from checkpoint')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--adv_mode',
default='feature_scatter',
type=str,
help='adv_mode (feature_scatter)')
parser.add_argument('--model_dir', type=str, help='model path')
parser.add_argument('--init_model_pass',
default='-1',
type=str,
help='init model pass (-1: from scratch; K: checkpoint-K)')
parser.add_argument('--max_epoch',
default=200,
type=int,
help='max number of epochs')
parser.add_argument('--save_epochs', default=100, type=int, help='save period')
parser.add_argument('--decay_epoch1',
default=60,
type=int,
help='learning rate decay epoch one')
parser.add_argument('--decay_epoch2',
default=90,
type=int,
help='learning rate decay point two')
parser.add_argument('--decay_rate',
default=0.1,
type=float,
help='learning rate decay rate')
parser.add_argument('--batch_size_train',
default=128,
type=int,
help='batch size for training')
parser.add_argument('--momentum',
default=0.9,
type=float,
help='momentum (1-tf.momentum)')
parser.add_argument('--weight_decay',
default=2e-4,
type=float,
help='weight decay')
parser.add_argument('--log_step', default=10, type=int, help='log_step')
# number of classes and image size will be updated below based on the dataset
parser.add_argument('--num_classes', default=10, type=int, help='num classes')
parser.add_argument('--image_size', default=32, type=int, help='image size')
parser.add_argument('--dataset', default='cifar10', type=str,
help='dataset') # concat cascade
args = parser.parse_args()
if args.dataset == 'cifar10':
print('------------cifar10---------')
args.num_classes = 10
args.image_size = 32
elif args.dataset == 'cifar100':
print('----------cifar100---------')
args.num_classes = 100
args.image_size = 32
if args.dataset == 'svhn':
print('------------svhn10---------')
args.num_classes = 10
args.image_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'
start_epoch = 0
# Data
print('==> Preparing data..')
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1]
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1]
])
elif args.dataset == 'svhn':
transform_train = transforms.Compose([
# transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1]
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # [-1 1]
])
if args.dataset == 'cifar10':
trainset = torchvision.datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data',
train=False,
download=True,
transform=transform_test)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
'ship', 'truck')
elif args.dataset == 'cifar100':
trainset = torchvision.datasets.CIFAR100(root='./data',
train=True,
download=True,
transform=transform_train)
testset = torchvision.datasets.CIFAR100(root='./data',
train=False,
download=True,
transform=transform_test)
elif args.dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root='./data',
split='train',
download=True,
transform=transform_train)
testset = torchvision.datasets.SVHN(root='./data',
split='test',
download=True,
transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size_train,
shuffle=True,
num_workers=2)
print('==> Building model..')
if args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'svhn':
print('---wide resenet-----')
basic_net = WideResNet(depth=28,
num_classes=args.num_classes,
widen_factor=10)
def print_para(net):
for name, param in net.named_parameters():
if param.requires_grad:
print(name)
print(param.data)
break
basic_net = basic_net.to(device)
# config for feature scatter
config_feature_scatter = {
'train': True,
'epsilon': 8.0 / 255 * 2,
'num_steps': 1,
'step_size': 8.0 / 255 * 2,
'random_start': True,
'ls_factor': 0.5,
}
if args.adv_mode.lower() == 'feature_scatter':
print('-----Feature Scatter mode -----')
net = Attack_FeaScatter(basic_net, config_feature_scatter)
else:
print('-----OTHER_ALGO mode -----')
raise NotImplementedError("Please implement this algorithm first!")
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume and args.init_model_pass != '-1':
# Load checkpoint.
print('==> Resuming from checkpoint..')
f_path_latest = os.path.join(args.model_dir, 'latest')
f_path = os.path.join(args.model_dir,
('checkpoint-%s' % args.init_model_pass))
if not os.path.isdir(args.model_dir):
print('train from scratch: no checkpoint directory or file found')
elif args.init_model_pass == 'latest' and os.path.isfile(f_path_latest):
checkpoint = torch.load(f_path_latest)
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch'] + 1
print('resuming from epoch %s in latest' % start_epoch)
elif os.path.isfile(f_path):
checkpoint = torch.load(f_path)
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch'] + 1
print('resuming from epoch %s' % (start_epoch - 1))
elif not os.path.isfile(f_path) or not os.path.isfile(f_path_latest):
print('train from scratch: no checkpoint directory or file found')
soft_xent_loss = softCrossEntropy()
def train_fun(epoch, net):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
# update learning rate
if epoch < args.decay_epoch1:
lr = args.lr
elif epoch < args.decay_epoch2:
lr = args.lr * args.decay_rate
else:
lr = args.lr * args.decay_rate * args.decay_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_acc(outputs, targets):
_, predicted = outputs.max(1)
total = targets.size(0)
correct = predicted.eq(targets).sum().item()
acc = 1.0 * correct / total
return acc
iterator = tqdm(trainloader, ncols=0, leave=False)
for batch_idx, (inputs, targets) in enumerate(iterator):
start_time = time.time()
inputs, targets = inputs.to(device), targets.to(device)
adv_acc = 0
optimizer.zero_grad()
# forward
outputs, loss_fs = net(inputs.detach(), targets)
optimizer.zero_grad()
loss = loss_fs.mean()
loss.backward()
optimizer.step()
train_loss = loss.item()
duration = time.time() - start_time
if batch_idx % args.log_step == 0:
if adv_acc == 0:
adv_acc = get_acc(outputs, targets)
iterator.set_description(str(adv_acc))
nat_outputs, _ = net(inputs, targets, attack=False)
nat_acc = get_acc(nat_outputs, targets)
print(
"epoch %d, step %d, lr %.4f, duration %.2f, training nat acc %.2f, training adv acc %.2f, training adv loss %.4f"
% (epoch, batch_idx, lr, duration, 100 * nat_acc,
100 * adv_acc, train_loss))
if epoch % args.save_epochs == 0 or epoch >= args.max_epoch - 2:
print('Saving..')
f_path = os.path.join(args.model_dir, ('checkpoint-%s' % epoch))
state = {
'net': net.state_dict(),
# 'optimizer': optimizer.state_dict()
}
if not os.path.isdir(args.model_dir):
os.mkdir(args.model_dir)
torch.save(state, f_path)
if epoch >= 0:
print('Saving latest @ epoch %s..' % (epoch))
f_path = os.path.join(args.model_dir, 'latest')
state = {
'net': net.state_dict(),
'epoch': epoch,
'optimizer': optimizer.state_dict()
}
if not os.path.isdir(args.model_dir):
os.mkdir(args.model_dir)
torch.save(state, f_path)
for epoch in range(start_epoch, args.max_epoch):
train_fun(epoch, net)