-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ERA5_Land.py
137 lines (103 loc) · 4.49 KB
/
test_ERA5_Land.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# ------------------------------------------------------------------
""""
Script for testing on ERA5-Land dataset
Contact Person: Mohamad Hakam Shams Eddin <[email protected]>
Computer Vision Group - Institute of Computer Science III - University of Bonn
"""
# ------------------------------------------------------------------
import torch
import numpy as np
from tqdm import tqdm
import utils.utils_train as utils
from models.build import VQ_model
import time
import os
from torch.utils.tensorboard import SummaryWriter
from dataset.ERA5_Land_dataset import ERA5_Land_Dataset
import config as config_file
np.set_printoptions(suppress=True)
torch.set_printoptions(sci_mode=False)
np.seterr(divide='ignore', invalid='ignore')
# ------------------------------------------------------------------
def test(config_file):
# read config arguments
config = config_file.read_arguments(train=True)
# get logger
logger = utils.get_logger(config)
# fix random seed
utils.fix_seed(config.seed)
# dataloader
utils.log_string(logger, "loading test dataset ...")
test_dataset = ERA5_Land_Dataset(
root_ERA5_Land=config.root_ERA5_Land,
root_NOAA=config.root_NOAA,
nan_fill=config.nan_fill,
is_aug=False,
is_shuffle=False,
is_norm=config.is_norm,
is_clima_scale=config.is_clima_scale,
variables=config.variables,
years=config.years_test,
threshold=config.threshold,
region=config.region,
alpha=config.alpha,
x_min=config.x_min,
x_max=config.x_max,
y_min=config.y_min,
y_max=config.y_max,
delta_t=config.delta_t,
window_size=config.window_size
)
test_dataloader = torch.utils.data.DataLoader(test_dataset,
batch_size=config.batch_size,
drop_last=False,
shuffle=False,
pin_memory=config.pin_memory,
num_workers=config.n_workers
)
utils.log_string(logger, "# testing samples: %d" % len(test_dataset))
# get models
utils.log_string(logger, "\nloading the model ...")
if config.gpu_id != "-1":
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu_id)
device = 'cuda'
else:
device = 'cpu'
# ensure that the config.en_de_pretrained is not None
if config.en_de_pretrained is None:
raise Exception('Testing needs a model checkpoint, config.en_de_pretrained is None')
model = VQ_model(config)
utils.log_string(logger, "model parameters ...")
utils.log_string(logger, "encoder parameters: %d" % utils.count_parameters(model.encoder))
utils.log_string(logger, "classifier parameters: %d" % utils.count_parameters(model.cls))
utils.log_string(logger, "vq parameters: %d" % utils.count_parameters(model.vq))
utils.log_string(logger, "all parameters: %d\n" % utils.count_parameters(model))
# DataParallel for multi-GPU
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model.to(device)
# testing loop
utils.log_string(logger, 'testing on ERA5 Land dataset ...\n')
eval_test = utils.evaluator(logger, 'Testing', config)
time.sleep(1)
# testing
with torch.no_grad():
model.eval()
time.sleep(1)
for i, (data_d, data_drought, data_drought_loss, data_cold_surface, data_cold_surface_loss,
data_sea, data_no_vegetation, file_name) in tqdm(enumerate(test_dataloader),
total=len(test_dataloader),
smoothing=0.9,
postfix=" validation"):
mask_valid = 1 - data_sea - data_cold_surface - data_no_vegetation
mask_valid[mask_valid < 0] = 0
pred, pred_y, _, _, _ = model(data_d.to(device))
pred = torch.sigmoid(pred.detach().cpu())
pred_c = pred.clone()
pred_c[pred > 0.35] = 1
pred_c[pred <= 0.35] = 0
eval_test(pred_c[:, 0, :, :].numpy(), data_drought.cpu().numpy(), mask_valid.cpu().numpy())
eval_test.get_results(0, 0)
if __name__ == '__main__':
test(config_file)