Skip to content

Latest commit

 

History

History
33 lines (30 loc) · 1.36 KB

FINETUNE.md

File metadata and controls

33 lines (30 loc) · 1.36 KB

Fine-tuning DropPos

A typical command to fine-tune ViT-B/16 with multi-node distributed training. For instance, run the following command to fine-tune DropPos with ViT-Base with 32 GPUs (4 nodes x 8 GPUs):

python -m torch.distributed.launch --nproc_per_node=8 \
    --nnodes 4 --node_rank 0 --master_port 12320 --master_addr=$ip_node_0 \
    main_finetune.py \
    --batch_size 32 \
    --accum_iter 1 \
    --model vit_base_patch16 \
    --finetune /path/to/checkpoint \
    \
    --epochs 100 \
    --warmup_epochs 5 \
    --blr 1e-3 --layer_decay 0.75 --weight_decay 0.05 \
    --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
    --dist_eval \
    --data_path /path/to/imagenet \
    --nb_classes 1000 \
    --output_dir  ./output_dir \
    --log_dir   ./log_dir \
    --experiment droppos_vit_base_patch16_in1k_ep800

on the first node. On other nodes, run the same command with --node_rank 1, --node_rank 2, and --node_rank 3 respectively. --master_addr is set as the ip of the node 0.

Please modify /path/to/imagenet to your ```<data_path>````. You can also move the txt files IN1K/train.txt and IN1K/val.txt to your imagenet root path. Please find these files here.

More scripts can be found in scripts.