-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMensuration.py
488 lines (370 loc) · 18.7 KB
/
Mensuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import math
import tkinter as tk
import tkinter.ttk as ttk
import tkinter.messagebox as tmb
geometries = ["Hemisphere","Sphere","Cube","Cuboid","Cylinder","Hollow Cylinder","Cone","Frustum","Rectangular Prism","Square Prism","Triangular Prism","Other Prisms","Right Pyramid","Regular Tetrahedron","Regular Octahedron","Torus","Ellipsoid","Dodecahedron","Icosahedron"]
def HEMISPHERE (inputs):
radius = inputs[0]
if radius > 0:
Lateral_Surface_area = 2*math.pi*(radius**2)
Total_Surface_area = 3*math.pi*(radius**2)
volume = (2/3)*math.pi*(radius**3)
results = [Lateral_Surface_area, Total_Surface_area, volume]
result_names = ["Lateral Surface area","Total Surface area","Volume"]
return(result_names,results)
else :
tmb.showerror(title="Error !",message="Radius has to be positive")
def SPHERE (inputs):
radius = inputs[0]
if radius > 0:
area = 4*math.pi*(radius**2)
volume = (4/3)*math.pi*(radius**3)
results = [area,volume]
result_names = ["Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Radius has to be positive !")
def CUBE (inputs):
side = inputs[0]
if side > 0:
L_area = 4*(side**2)
T_area = 6*(side**2)
volume = side**3
diagonal = side*(3**0.5)
results = [L_area,T_area,volume,diagonal]
result_names = ["Lateral Surface Area","Total Surface Area","Volume","Diagonal"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Length of the Edge has to be positive !")
def CUBOID (inputs):
Length = inputs[0]
Breadth = inputs[1]
Height = inputs[2]
if Length > 0 and Breadth > 0 and Height > 0:
L_area = 2*Height*(Length + Breadth)
T_area = 2*((Length*Breadth)+(Breadth*Height)+(Length*Height))
volume = Length*Breadth*Height
diagonal = ((Length**2)+(Breadth**2)+(Height**2))**(0.5)
results = [L_area,T_area,volume,diagonal]
result_names = ["Lateral Surface Area","Total Surface Area","Volume","Diagonal"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Inputs have to be positive !")
def CYLINDER (inputs):
radius_of_base = inputs[0]
height = inputs[1]
if radius_of_base > 0 and height > 0:
Curved_Surface_area = 2*(math.pi)*(radius_of_base)*(height)
Total_Surface_area = (2*(math.pi)*(radius_of_base))*(radius_of_base + height)
volume = (math.pi)*(radius_of_base**2)*(height)
results = [Curved_Surface_area, Total_Surface_area, volume]
result_names = ["Curved Surface area","Total Surface area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Radius of Base and Height have to be positive !")
def HOLLOW_CYLINDER (inputs):
Internal_Radius = inputs[0]
External_Radius = inputs[1]
Height = inputs[2]
#Just for Easy Calculation purposes, Calculating "Total Radius" value
if Internal_Radius > 0 and External_Radius > 0 and Height > 0:
Total_Radius = Internal_Radius + External_Radius
Thickness = External_Radius - Internal_Radius
volume = (math.pi)*(Height)*(Thickness)*(Total_Radius)
Curved_Surface_area = 2*math.pi*Height*Total_Radius
Total_Surface_area = 2*math.pi*Total_Radius*(Height + Thickness)
Area_Of_Each_Base_Ring = (math.pi)*(Thickness)*(Total_Radius)
if Internal_Radius >= External_Radius:
tmb.showerror(title="Error !",message="Internal Radius Can Never Be Greater Than Or Equal To External Radius As Such A Hollow Cylinder Doesn't Exist.")
else:
results = [Thickness,volume,Curved_Surface_area,Total_Surface_area,Area_Of_Each_Base_Ring]
result_names = ["Thickness","Volume","Curved Surface Area","Total Surface Area","Area Of Each Base Ring"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Inputs have to be positive !")
def CONE (inputs):
radius_of_base = inputs[0]
Height = inputs[1]
if radius_of_base > 0 and Height > 0:
#Just for Easy Calculation purposes, Calculating "Slant Height" value
Slant_height = ((Height**2)+(radius_of_base**2))**(0.5)
Curved_Surface_area = math.pi*radius_of_base*Slant_height
Total_Surface_area = (math.pi*radius_of_base)*(radius_of_base+Slant_height)
volume =(1/3)*(math.pi)*(radius_of_base**2)*(Height)
results = [Curved_Surface_area,Total_Surface_area,volume]
result_names = ["Curved Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Radius of Base and Height have to be positive !")
#When a cone is cut with a plane parallel to it's base and remove the cone that is formed on one side of that plane, the part which is left over on the other side of the plane is called frustum of the cone.
def FRUSTUM (inputs):
radius_of_lower_base = inputs[0]
radius_of_upper_base = inputs[1]
if radius_of_lower_base > 0 and radius_of_upper_base > 0:
if radius_of_lower_base > radius_of_upper_base:
x = radius_of_lower_base - radius_of_upper_base
elif radius_of_lower_base < radius_of_upper_base:
x = radius_of_upper_base - radius_of_lower_base
if radius_of_upper_base == radius_of_lower_base:
tmb.showerror(title="Error !",message="Such A Frustum Does Not Exist, The Given Values Pertain To Cylider !")
SumRadius = ((radius_of_upper_base)**2) + ((radius_of_lower_base)**2) + (radius_of_lower_base)*(radius_of_upper_base)
Height = inputs[2]
Slant_height = ((Height**2)+(x**2))**(0.5)
lateral_surface_area = math.pi*Slant_height*(radius_of_upper_base + radius_of_lower_base)
Total_surface_area = lateral_surface_area + ((math.pi)*(((radius_of_upper_base)**2) + ((radius_of_lower_base)**2)))
volume = (1/3)*math.pi*(Height)*(SumRadius)
# center_of_gravity = ((Height)*(SumRadius + (2*(radius_of_upper_base**2)) + ((radius_of_lower_base)*(radius_of_upper_base))))/(4*SumRadius)
results = [lateral_surface_area,Total_surface_area,volume]
result_names = ["Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Both the Radii have to be positive !")
#There are different types of Prisms :
#Rectangular Prism is Cuboid Hence thought of Not mentioning, but if you want it...
def PRISM0 (inputs):
Length = inputs[0]
Breadth = inputs[1]
Height = inputs[2]
if Length > 0 and Breadth > 0 and Height > 0:
L_area = 2*Height*(Length + Breadth)
T_area = 2*((Length*Breadth)+(Breadth*Height)+(Length*Height))
volume = Length*Breadth*Height
diagonal = ((Length**2)+(Breadth**2)+(Height**2))**(0.5)
results = [L_area,T_area,volume,diagonal]
result_names = ["Lateral Surface Area","Total Surface Area","Volume","Diagonal"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Inputs have to be positive !")
#Square Prism i.e Cube in which Length and Breadth are same and both different from Height values.
def PRISM1 (inputs):
Base_edge = inputs[0]
Height = inputs[1]
if Base_edge > 0 and Height > 0:
lateral_surface_area = (4*Base_edge*Height)
Total_Surface_area = (((4*Base_edge)*(Height))+(2*(Base_edge**2)))
volume = (Base_edge**2)*Height
results = [lateral_surface_area,Total_Surface_area,volume]
result_names = ["Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Base Edge and Height have to be positive !")
def PRISM2 (inputs):
Height = inputs[0]
s1 = inputs[1] #base_triangle_side1
s2 = inputs[2] #base_triangle_side2
s3 = inputs[3] #base_triangle_side3
#sum1, s base_area are defined as to make calculations easier and coding faster
if Height > 0 and s1 > 0 and s2 > 0 and s3 > 0:
sum1 = s1 + s2 +s3
s = (0.5)*(sum1)
base_area = ((s)*(s-s1)*(s-s2)*(s-s3))**(0.5)
lateral_surface_area = (Height)*(sum1)
Total_surface_area = ((Height)*(sum1)) + 2*(base_area)
volume = (base_area)*(Height)
results = [lateral_surface_area,Total_surface_area,volume]
result_names = ["Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Height and Sides of the Triangle have to be positive !")
def PRISM3 (inputs):
perimetre_base = inputs[0]
area_base = inputs[1]
height = inputs[2]
if perimetre_base > 0 and area_base > 0 and height > 0:
lateral_surface_area = perimetre_base*height
Total_surface_area = (perimetre_base*height) + (2*area_base)
volume = area_base*height
results = [lateral_surface_area,Total_surface_area,volume]
result_names = ["Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Inputs have to be positive !")
def RIGHT_PYRAMID (inputs):
perimetre_base = inputs[0]
area_base = inputs[1]
height = inputs[2]
Slant_height = inputs[3]
if perimetre_base > 0 and area_base > 0 and height > 0 and Slant_height > 0:
lateral_surface_area = (0.5)*perimetre_base*Slant_height
Total_surface_area = ((0.5)*perimetre_base*Slant_height) + area_base
volume = (1/3)*area_base*height
results = [lateral_surface_area,Total_surface_area,volume]
result_names = ["Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Inputs have to be positive !")
def REGULAR_TETRAHEDRON (inputs):
a = inputs[0]
if a > 0:
height = a*((2/3)**(0.5))
area = (1/4)*(3**(0.5))*(a**2)
r_c = (1/4)*(6**(0.5))*a
r_i = a/(24**(0.5))
r_m = a/(8**(0.5))
lateral_surface_area = 3*(1/4)*(3**(0.5))*(a**2)
Total_surface_area = (3**(0.5))*(a**2)
volume = (1/12)*(2**(0.5))*(a**3)
results = [height,area,r_c,r_i,r_m,lateral_surface_area,Total_surface_area,volume]
result_names = ["Height","Area Of Each Face","Circumradius","Inradius","Midradius","Lateral Surface Area","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Edge length has to be positive !")
def REGULAR_OCTAHEDRON (inputs):
a = inputs[0]
if a > 0:
height = ((a**2) - ((a/2)**2))**(0.5)
area = (1/4)*(3**(0.5))*(a**2)
r_c = a/(2**(0.5))
r_i = a/(6**(0.5))
r_m = a/2
Total_surface_area = 2*(3**(0.5))*(a**2)
volume = (1/3)*(2**(0.5))*(a**3)
results = [height,area,r_c,r_i,r_m,Total_surface_area,volume]
result_names = ["Height","Area Of Each Face","Circumradius","Inradius","Midradius","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Edge length has to be positive !")
def TORUS (inputs):
r_out = inputs[0]
r_in = inputs[1]
if r_out > r_in and r_in > 0 and r_out > 0:
Total_surface_area = ((math.pi)**2)*(r_out + r_in)*(r_out - r_in)
volume = ((math.pi)**2)*(1/4)*(r_out + r_in)*((r_out - r_in)**2)
results = [Total_surface_area,volume]
result_names = ["Total Surface Area","Volume"]
return(result_names,results)
else :
tmb.showerror(title="Error !",message="Outer Radius Cannot Be Equal Or Less Than The Inner Radius and both the values have to be positive.")
def ELLIPSOID (inputs):
a = inputs[0]
b = inputs[1]
c = inputs[2]
p = 1.6075
Total_surface_area = 4*(math.pi)*(((((a**p)*(b**p)) + ((a**p)*(c**p)) + ((b**p)*(c**p)))/3)**(1/p))
volume = (4/3)*(math.pi)*(a)*(b)*(c)
results = [Total_surface_area,volume]
result_names = ["Total Surface Area","Volume"]
return(result_names,results)
#Dodecahedron is a regular polyhedron with 12 faces.
def DODECAHEDRON (inputs):
a = inputs[0]
if a > 0:
area = ((25 + (10*(5**(0.5))))**(0.5))*(a**2)*(1/4)
r_c = (a/4)*((3**(0.5)) + (15**(0.5)))
r_i = (a)*((25 + (11*(5**(0.5))))/40)**(0.5)
r_m = (a/4)*(3 + (5**(0.5)))
Total_surface_area = ((25 + (10*(5**(0.5))))**(0.5))*(a**2)*(1/4)*(12)
volume = (1/4)*(a**3)*(15 + (7*(5**(0.5))))
results = [area,r_c,r_i,r_m,Total_surface_area,volume]
result_names = ["Area of Each Face","Circumradius","Inradius","Midradius","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Input has to be positive !")
#Icosahedron is a regular polyhedron with 20 faces.
def ICOSAHEDRON (inputs):
a = inputs[0]
if a > 0:
area = (1/4)*(3**(0.5))*(a**2)
r_c = (a/4)*((10 + (2*(5**(0.5))))**(0.5)) #sin(72 degrees)*a
r_i = (a/12)*((3*(3**(0.5))) + (15**(0.5)))
r_m = (a/4)*(1 + (5**(0.5)))
Total_surface_area = (5*(3**(0.5)))*(a**2)
volume = (1/12)*(a**3)*(15 + (5*(5**(0.5))))
results = [area,r_c,r_i,r_m,Total_surface_area,volume]
result_names = ["Area of Each Face","Circumradius","Inradius","Midradius","Total Surface Area","Volume"]
return(result_names,results)
else:
tmb.showerror(title="Error !",message="Input has to be positive !")
calc_fns = [HEMISPHERE,SPHERE,CUBE,CUBOID,CYLINDER,HOLLOW_CYLINDER,CONE,FRUSTUM,PRISM0,PRISM1,PRISM2,PRISM3,RIGHT_PYRAMID,REGULAR_TETRAHEDRON,REGULAR_OCTAHEDRON,TORUS,ELLIPSOID,DODECAHEDRON,ICOSAHEDRON]
labels_list = [["Radius"],["Radius"],["Side"],["Length","Breadth","Height"],["Radius Of Base","Height"],["Internal Radius","External Radius","Height"],["Radius Of Base","Height"],["Radius Of Lower Base","Radius Of Upper Base","Height"],["Length","Breadth","Height"],["Base Edge","Height"],["Height","BASE SIDE1","BASE SIDE2","BASE SIDE3"],["Perimetre Of Base","Area Of Base","Height"],["Perimetre Of Base","Area Of Base","Height","Slant Height"],["Length of Each Edge"],["Length of Each Edge"],["Outer Radius","Inner Radius"],["Radius of Ellipsoid along x-axis","Radius of Ellipsoid along y-axis","Radius of Ellipsoid along z-axis"],["Length of Each Edge"],["Length of Each Edge"]]
def BUTTON_FN (calc_fn,label_list):
def CALC_FN (entry_list):
inputs = []
for i in range(len(entry_list)):
try:
inputs += [float(entry_list[i].get())]
except:
tmb.showerror(message="Please enter valid number for {}".format(label_list[i]))
# print(inputs)
# print(float(entry_list[i].get()))
# print(entry_list)
result_names,results = calc_fn(inputs)
# print(calc_fn(inputs))
result_message = ""
for i in range(len(results)):
result_message += "{} = {}\n".format(result_names[i],results[i])
tmb.showinfo(message=result_message)
return()
swindow = tk.Tk()
swindow.title("Enter The Values")
entry_list = []
for i in range(len(label_list)):
label_widget = ttk.Label(master=swindow,text=label_list[i])
label_widget.grid(row=i,column=0)
entry_widget = ttk.Entry(master=swindow)
entry_widget.grid(row=i,column=1)
entry_list += [entry_widget]
calc_button = ttk.Button(master=swindow,text="Calculate",command=lambda:CALC_FN(entry_list))
calc_button.grid(row=i+1,column=0,columnspan=3,sticky='nsew')
swindow.mainloop()
return()
root = tk.Tk()
root.title("Geometrical Calculations")
#Hemisphere
geo_button0 = ttk.Button(master=root,text=geometries[0],command=lambda:BUTTON_FN(calc_fns[0],labels_list[0]))
geo_button0.grid(row=0,column=0)
#Sphere
geo_button1 = ttk.Button(master=root,text=geometries[1],command=lambda:BUTTON_FN(calc_fns[1],labels_list[1]))
geo_button1.grid(row=1,column=0)
#Cube
geo_button2 = ttk.Button(master=root,text=geometries[2],command=lambda:BUTTON_FN(calc_fns[2],labels_list[2]))
geo_button2.grid(row=2,column=0)
#Cuboid
geo_button3 = ttk.Button(master=root,text=geometries[3],command=lambda:BUTTON_FN(calc_fns[3],labels_list[3]))
geo_button3.grid(row=3,column=0)
#Cylinder
geo_button4 = ttk.Button(master=root,text=geometries[4],command=lambda:BUTTON_FN(calc_fns[4],labels_list[4]))
geo_button4.grid(row=4,column=0)
#Hollow Cylinder
geo_button5 = ttk.Button(master=root,text=geometries[5],command=lambda:BUTTON_FN(calc_fns[5],labels_list[5]))
geo_button5.grid(row=5,column=0)
#Cone
geo_button6 = ttk.Button(master=root,text=geometries[6],command=lambda:BUTTON_FN(calc_fns[6],labels_list[6]))
geo_button6.grid(row=6,column=0)
#Frustum
geo_button7 = ttk.Button(master=root,text=geometries[7],command=lambda:BUTTON_FN(calc_fns[7],labels_list[7]))
geo_button7.grid(row=7,column=0)
#Rectangular Prism as PRISM0
geo_button8 = ttk.Button(master=root,text=geometries[8],command=lambda:BUTTON_FN(calc_fns[8],labels_list[8]))
geo_button8.grid(row=8,column=0)
#Square Prism as PRISM1
geo_button9 = ttk.Button(master=root,text=geometries[9],command=lambda:BUTTON_FN(calc_fns[9],labels_list[9]))
geo_button9.grid(row=9,column=0)
# Triangular Prism as PRISM2
geo_button10 = ttk.Button(master=root,text=geometries[10],command=lambda:BUTTON_FN(calc_fns[10],labels_list[10]))
geo_button10.grid(row=10,column=0)
# Other Prism as PRISM3
geo_button11 = ttk.Button(master=root,text=geometries[11],command=lambda:BUTTON_FN(calc_fns[11],labels_list[11]))
geo_button11.grid(row=11,column=0)
#Right Pyramid
geo_button12 = ttk.Button(master=root,text=geometries[12],command=lambda:BUTTON_FN(calc_fns[12],labels_list[12]))
geo_button12.grid(row=12,column=0)
#Regular Tetrahedron
geo_button13 = ttk.Button(master=root,text=geometries[13],command=lambda:BUTTON_FN(calc_fns[13],labels_list[13]))
geo_button13.grid(row=13,column=0)
#Regular Octahedron
geo_button14 = ttk.Button(master=root,text=geometries[14],command=lambda:BUTTON_FN(calc_fns[14],labels_list[14]))
geo_button14.grid(row=14,column=0)
#Torus
geo_button15 = ttk.Button(master=root,text=geometries[15],command=lambda:BUTTON_FN(calc_fns[15],labels_list[15]))
geo_button15.grid(row=15,column=0)
#Ellipsoid
geo_button16 = ttk.Button(master=root,text=geometries[16],command=lambda:BUTTON_FN(calc_fns[16],labels_list[16]))
geo_button16.grid(row=16,column=0)
#Dodecahedron
geo_button17 = ttk.Button(master=root,text=geometries[17],command=lambda:BUTTON_FN(calc_fns[17],labels_list[17]))
geo_button17.grid(row=17,column=0)
#Icosahedron
geo_button18 = ttk.Button(master=root,text=geometries[18],command=lambda:BUTTON_FN(calc_fns[18],labels_list[18]))
geo_button18.grid(row=18,column=0)
root.mainloop()