-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdataset.py
151 lines (119 loc) · 4.45 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import torch
import os
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image
from os import path
from glob import glob
import random
from config import *
dirs = glob(IMAGES_PATH + "/*/")
num_classes = {}
i = 0
for d in dirs:
d = d.replace(IMAGES_PATH, "")
d = d.replace("/", "")
if " " in d:
d = d.replace(" ", "_")
num_classes[d] = i
i+=1
print ("Classes: ")
print (num_classes)
print ("")
# read mean and dev. standard pre-computed
m = 0
s = 0
if os.path.isfile('./mean_devstd.txt'):
m_s = open("mean_devstd.txt", "r").read()
if "," in m_s:
m_s = m_s.replace("\n", "")
m_s = m_s.replace("tensor", "")
m_s = m_s.replace("(", "")
m_s = m_s.replace(")", "")
m_s = m_s.split(",")
m = torch.Tensor( [float(m_s[0]), float(m_s[1]), float(m_s[2])] )
s = torch.Tensor( [float(m_s[3]), float(m_s[4]), float(m_s[5])] )
def get_class(idx):
#print (num_classes)
for key in num_classes:
if idx == num_classes[key]:
return key
def preprocessing():
train_csv = ""
test_csv = ""
train_csv_supp = []
test_csv_supp = []
class_files_training = []
class_files_testing = []
for key in num_classes:
if " " in key:
os.rename(IMAGES_PATH+"/"+key, IMAGES_PATH+"/"+key.replace(" ", "_"))
key = key.replace(" ", "_")
class_files = glob(IMAGES_PATH+"/"+str(key)+"/*")
class_files = [w.replace(IMAGES_PATH+"/"+str(key)+"/", "") for w in class_files]
class_files.sort()
class_files_training = class_files[: int(len(class_files)*.66)] # get 66% class images fo training
class_files_testing = class_files[int(len(class_files)*.66)+1 :] # get 33% class images fo testing
for f in class_files_training:
if "," in f or "#" in f or " " in f:
tmp_f = f.replace(",", "")
tmp_f = tmp_f.replace("#", "")
tmp_f = tmp_f.replace(" ", "_")
os.rename(IMAGES_PATH+"/"+key+"/"+f, IMAGES_PATH+"/"+key+"/"+tmp_f)
f = tmp_f
train_csv_supp.append(f + ","+str(key))
for f in class_files_testing:
if "," in f or "#" in f or " " in f:
tmp_f = f.replace(",", "")
tmp_f = tmp_f.replace("#", "")
tmp_f = tmp_f.replace(" ", "_")
os.rename(IMAGES_PATH+"/"+key+"/"+f, IMAGES_PATH+"/"+key+"/"+tmp_f)
f = tmp_f
test_csv_supp.append(f + ","+str(key))
random.shuffle(train_csv_supp)
random.shuffle(test_csv_supp)
for t in train_csv_supp:
train_csv += t + "\n"
for t in test_csv_supp:
test_csv += t + "\n"
train_csv_file = open("train_file.csv", "w+")
train_csv_file.write(train_csv)
train_csv_file.close()
test_csv_file = open("test_file.csv", "w+")
test_csv_file.write(test_csv)
test_csv_file.close()
# Algorithms to calculate mean and standard_deviation
print("Loading dataset...")
dataset = LocalDataset(IMAGES_PATH, TRAINING_PATH, transform=transforms.ToTensor())
print("Calculating mean & dev std...")
m = torch.zeros(3) # Mean
s = torch.zeros(3) # Standard Deviation
for sample in dataset:
m += sample['image'].sum(1).sum(1)
s += ((sample['image']-m.view(3,1,1))**2).sum(1).sum(1)
m /= len(dataset)*256*144
s = torch.sqrt(s/(len(dataset)*256*144))
print("Calculated mean and standard deviation!")
str_m = str(m[0])+","+str(m[1])+","+str(m[2])
str_s = str(s[0])+","+str(s[1])+","+str(s[2])
file = open("mean_devstd.txt", "w+")
file.write(str(str_m)+","+str(str_s))
file.close()
#preprocessing()
class LocalDataset(Dataset):
def __init__(self, base_path, txt_list, transform=None):
self.base_path=base_path
self.images = np.loadtxt(txt_list,delimiter=',',dtype='str') # use np.genfrom() instead of np.loadtxt() to skip errors
self.transform = transform
def __getitem__(self, index):
f,c = self.images[index]
image_path = path.join(self.base_path + "/" + str(c), f)
im = Image.open(image_path).convert('RGB')
if self.transform is not None:
im = self.transform(im)
label = num_classes[c]
return { 'image' : im, 'label':label, 'img_name': f }
def __len__(self):
return len(self.images)