-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
203 lines (161 loc) · 7.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import json
from torch.utils.data import DataLoader
# from models import *
from model.darknet.models import *
from utils.datasets import *
from utils.utils import *
def test(config, model=None):
'''
degrade as test module and only use during model training
for evaluation and service, please use `detect.py`
'''
### ARGUMENT
dictfile = config["model"]["parameters"]["dictfile"]
debug = config["model"]["parameters"]["debug"]
model_format = config["model"]["weights"]["format"]
pretrain_model = config["model"]["weights"]["pretrain"]
resume = config["model"]["weights"]["resume"]
freeze_backbone = config["model"]["weights"]["freeze"]
transfer = config["model"]["weights"]["transfer"]
data_format = config["test"]["data"]["format"]
data_filepath = config["test"]["data"]["txtpath"]
batch_size = config["test"]["parameters"]["batch"]
img_size = config["test"]["parameters"]["size"]
### PARAMETERS & DICTIONARY
save_json = False
iou_thres = 0.5
nms_thres = 0.5
conf_thres = 0.01
classes = parse_dict_file(dictfile)
nc = len(classes)
names = classes
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
test_path = data_filepath
### MODEL INIT
assert model is not None
device = next(model.parameters()).device # get model device
### Dataloader
dataset = LoadImagesAndLabels(test_path, img_size, batch_size)
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=2,
pin_memory=True,
collate_fn=dataset.collate_fn)
### Test Section
seen = 0
model.eval()
print(('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1'))
loss, p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0., 0.
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc='Computing mAP')):
targets = targets.to(device)
imgs = imgs.to(device)
_, _, height, width = imgs.shape # batch size, channels, height, width
### Plot images with bounding boxes
if debug and batch_i == 0 and not os.path.exists('test_batch0.jpg'):
plot_images(imgs=imgs, targets=targets, fname='test_batch0.jpg')
### Run model
inf_out, train_out = model(imgs) # inference and training outputs
### Compute loss
if hasattr(model, 'hyp'): # if model has loss hyperparameters
loss_i, _ = compute_loss(train_out, targets, model)
loss += loss_i.item()
### Run NMS --> (under develop) will add more NMS methods
output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres, nms_style='MERGE')
### Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append(([], torch.Tensor(), torch.Tensor(), tcls))
continue
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for di, d in enumerate(pred):
jdict.append({
'image_id': image_id,
'category_id': classes[int(d[6])],
'bbox': [float3(x) for x in box[di]],
'score': float(d[4])
})
# Assign all predictions as incorrect
correct = [0] * len(pred)
if nl:
detected = []
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
tbox[:, [0, 2]] *= width
tbox[:, [1, 3]] *= height
# Search for correct predictions
for i, (*pbox, pconf, pcls_conf, pcls) in enumerate(pred):
# Break if all targets already located in image
if len(detected) == nl:
break
# Continue if predicted class not among image classes
if pcls.item() not in tcls:
continue
# Best iou, index between pred and targets
m = (pcls == tcls_tensor).nonzero().view(-1)
iou, bi = bbox_iou(pbox, tbox[m]).max(0)
# If iou > threshold and class is correct mark as correct
if iou > iou_thres and m[bi] not in detected: # and pcls == tcls[bi]:
correct[i] = 1
detected.append(m[bi])
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls))
### Compute statistics
stats = [np.concatenate(x, 0) for x in list(zip(*stats))] # to numpy
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
try:
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
except:
print('RuntimeWarning: Mean of empty slice --> invalid value encountered in double_scalars')
mp, mr, map, mf1 = 0., 0., 0., 0.
### Print results
pf = '%20s' + '%10.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1), end='\n\n')
# Print results per class
if nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
### Save JSON for COCO only
# if save_json and map and len(jdict):
# imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataset.img_files]
# with open('results.json', 'w') as file:
# json.dump(jdict, file)
# from pycocotools.coco import COCO
# from pycocotools.cocoeval import COCOeval
# # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
# cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
# cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api
# cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
# cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
# cocoEval.evaluate()
# cocoEval.accumulate()
# cocoEval.summarize()
# map = cocoEval.stats[1] # update mAP to pycocotools mAP
# Return results
return mp, mr, map, mf1, loss / len(dataloader)
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('-c', '--config', type=str, help='configure path')
opt = parser.parse_args()
config_path = opt.config
print(opt)
config = parse_json_cfg(config_path)
with torch.no_grad():
mAP = test(config)
print(mAP)